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Abstract. Hyperfine studies of disordered materials often yield the distribution of the electric
field gradient (EFG) or related quadrupole splitting (QS). The question of the structural
information that may be extracted from such distributions has been considered for more than
fifteen years. Experimentally most studies have been performed using Mössbauer spectroscopy,
especially on57Fe. However, NMR, NQR, EPR and PAC methods have also received some
attention. The EFG distribution for a random distribution of electric charges was for instance
first investigated by Czjzeket al [1] and a general functional form was derived for the joint
(bivariate) distribution of the principal EFG tensor componentVzz and the asymmetry parameter
η. The importance of the Gauss distribution for such rotationally invariant structural models
was thus evidenced. Extensions of that model which are based on degenerate multivariate Gauss
distributions for the elements of the EFG tensor were proposed by Czjzek. The latter extensions
have been used since that time, more particularly in Mössbauer spectroscopy, under the name
‘shell models’. The mathematical foundations of all the previous models are presented and
critically discussed as they are evidenced by simple calculations in the case of the EFG tensor.
The present article only focuses on those aspects of the EFG distribution in disordered solids
which can be discussed without explicitly looking at particular physical mechanisms. We present
studies of three different model systems. A reference model directly related to the first model
of Czjzek, called the Gaussian isotropic model (GIM), is shown to be the limiting case for
many different models with a large number of independent contributions to the EFG tensor and
not restricted to a point-charge model. The extended validity of the marginal distribution ofη

in the GIM model is discussed. It is also shown that the second model based on degenerate
multivariate normal distributions for the EFG components yields questionable results and has
been exaggeratedly used in experimental studies. The latter models are further discussed in
the light of new results. The problems raised by these extensions are due to the fact that the
consequences of the statistical invariance by rotation of the EFG tensor have not been sufficiently
taken into account. Further difficulties arise because the structural degrees of freedom of the
disordered solid under consideration have been confused with the degrees of freedom of QS
distributions. The relations which are derived and discussed are further illustrated by the case of
the EFG tensor distribution created at the centre of a sphere bym charges randomly distributed
on its surface. The third model, a simple extension of the GIM, considers the case of an
EFG tensor which is the sum of a fixed part and of a random part with variable weights. The
bivariate distributionf (Vzz, η) is calculated exactly in the most symmetric case and the effect
of the random part is investigated as a function of its weight. The various models are more
particularly discussed in connection with short-range order in disordered solids. An ambiguity
problem which arises in the evaluation of bivariate distributions of centre lineshift (isomer shift)
and quadrupole splitting from1

2 ↔ 3
2 Mössbauer spectra is finally quantitatively considered.
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1. Introduction

The distribution of the electric field gradient (EFG) or related quadrupole splitting (QS) has
been often studied by M̈ossbauer spectroscopy, NMR, PAC and EPR to gain information
on concentrated non-magnetic crystalline and non-crystalline materials. These include non-
periodic solids with for instance topological and/or chemical disorder or quasi-periodic
solids (glasses, nano-structured materials, quasicrystals etc). The literature on non-magnetic
amorphous materials is too extensive to cite in detail. The reader is referred for example to
references [1] to [6]. One of the most basic properties of the EFG distribution is the sign of
the majority EFG component. Unfortunately, for57Fe Mössbauer spectroscopy this is only
obtainable from spectra taken in an external magnetic field. This has only been done for
some amorphous materials (see [7–11]). Many studies on quasicrystalline materials exist as
well. Although these are often well ordered materials with narrow Bragg reflections, they
always display broad QS distributions similar to amorphous materials (see [15–22]). As in
the case of amorphous materials, only very few studies have been made of the sign of the
dominating EFG component. [13–16] are exceptions.

However, some problems need to be overcome in order to obtain significant conclusions.
One problem often encountered in obtaining the experimental QS marginal distributionP(1)

from Mössbauer spectra with12 ↔ 3
2 transitions is the presence of centre lineshifts (isomer

shifts IS)δ. The actual distribution is thus bivariate:f (δ,1). It is often simplified in the
literature (for example see [17, 23–25]) wheref (δ,1) is replaced byP(1)δ(δ − F(1)),
assuming some explicit and exact dependence ofδ on1, in generalδ = a1+ δ0. On the
other hand, Albertoet al [26] have presented in a recent study a two dimensional Gaussian
distribution method includingδ–1 correlations. Similar results have also been presented by
Lagarec and Rancourt [27] using Voigt line shapes. However some ambiguity problems arise
when the bivariate distributionf (δ,1) is determined from M̈ossbauer spectra, as discussed
in subsection 7.2. Another problem is to relate experimental results, once firmly established,
to theoretical models in order that realistic conclusions may be drawn on the structural
characteristics. The present article only focuses on those aspects of the EFG distribution in



Distribution of EFG in disordered solids 10717

disordered solids which can be discussed without explicitly looking at particular physical
mechanisms. Detailed studies of static quadrupole effects due to various kinds of defect
have been considered in detail in various review papers to which the readers are referred
[2–5]. The EFG distribution in the case of random atomic arrangements has played a
seminal role in the analysis of EFG and QS distributions. Czjzeket al [1] have provided
a model distribution for this case. The same EFG distribution was independently derived
by Sẗockmann [2] for a cubic system with a large concentration of vacancies randomly
distributed. Both derived the joint (bivariate) distribution of the principal EFG tensor
componentVzz and the asymmetry parameterη. Because of its central role and of its
general validity, the mathematical foundations of this model will be more fully analysed as
they are evidenced by simple calculations in the case of the EFG tensor.

The relevance of theη distribution derived for such models to ana priori large class
of disordered solids will moreover be emphasized. As important is the discussion of the
extensions to these distribution forms that were proposed by Czjzek [29] to model the QS
distributions in materials with chemical and topological short range order. Another model
has been proposed by Coey as reported by Varret and Henry [30].

The serious difficulties briefly mentioned by Le Caër et al [9, 28] are raised by some
of the latter still widely used models [29]. Some of these difficulties are due to the fact
that the consequences of the assumed statistical invariance by rotation of the EFG tensor
have not been sufficiently taken into account. Further difficulties are because the structural
degrees of freedom of the disordered solid under consideration have been confused with
degrees of freedom of QS distributions. We will also discuss several numerical simulations
for random EFG tensors, which illuminate the properties discussed above. This discussion
is not limited to M̈ossbauer spectroscopy: the discussion applies as well to any hyperfine
method capable of determining certain characteristic properties of the EFG tensor and more
generally to techniques which are sensitive to physical properties represented by second rank
tensors. This includes for example nuclear magnetic resonance (NMR), nuclear quadrupole
resonance (NQR) as well as perturbed angular correlation (PAC) studies. Both Heubeset al
[31] as well as Damonteet al [32] have presented PAC results on non-magnetic glasses.
These results are in good agreement with the distribution presented by Czjzeket al [1] as
will be discussed below (the first for111Cd in a-Ga, and the second for181Hf in a-Hf1−xCux).
27Al NMR results on a single-grain Al–Pd–Mn quasicrystal have been presented by Shastri
et al [33] for different angles between the external field and the quasicrystal axis system.
No dependence on angle could be found, and the resulting distribution agrees qualitatively
with the Czjzeket al result. Recently we have been analysing similar27Al and 65Cu NMR
results on Al–Cu–Fe quasicrystalline powders and have found similar results [34]. NQR
results have also been presented by several authors [35, 36]. Distributions of Czjzek’s type
of the fine structure parameter in electron paramagnetic resonance (EPR) studies of Fe3+ in
alkali borate and transition metal fluoride glasses have also been presented [37, 38].

The main reasons to worry about the distribution of the EFG tensor itself and not only
about the distribution of its eigenvalues (through the bivariate distribution ofVzz andη) lie
in the following three points.

(1) Additivity of the various physical contributions holds for the elements of the EFG
tensor itself, but not for its eigenvalues.

(2) The possibility to gain information about eventual asymmetries of Mössbauer spectra
(different from those related to IS–QS correlations) which might be extracted from EFG
tensor distributions. As discussed in section 4.2, asymmetries of spectral components could
possibly exist according to the physical scale at which the disordered solids are characterized.
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An example discussed below involves medium-range order in an amorphous solid.
(3) Some widely used models [29] make explicit assumptions about the distribution of

the EFG tensor.

2. Hyperfine Hamiltonian

The hyperfine Hamiltonian for the change in nuclear levels due to the external electric
charges is derived in most standard books on Mössbauer spectroscopy. The term
proportional to the quadrupole moment of the nuclear charges depends on the electric field
gradient created by external charges (local atom and neighbours) at the nucleus. In terms of
the angular momentum operatorsI2, Iz and the ladder operatorsI+ andI− of the nuclear
states, this Hamiltonian can be written as

HQ = eQ

4I (2I − 1)

[
Vzz(3I2

z − I2)+ 1

2
(Vxx − Vyy)(I2

− + I2
+)
]
. (1)

We denote the eigenvalues of the EFG tensor asVxx , Vyy andVzz. (The elements of the EFG
tensor in its general non-diagonalized form will be written in lower case, withvij = vji ,
i, j = x, y, z and the trace of the EFG tensorṼ is tr(Ṽ ) = vxx + vyy + vzz = 0.) If the
eigenvalues are sorted such that|Vxx | 6 |Vyy | 6 |Vzz| (which we denote by upper case),
then the diagonal EFG tensor can be written in terms of the two variablesVzz and the
asymmetry parameterη given by

06 η ≡ Vxx − Vyy
Vzz

6 1. (2)

This result should not lead us to think that there are only two independent variables for
defining the EFG tensor: by diagonalizingvij , we have chosen the three Euler angles
(α, β, γ ). Thus there are five independent variables as expected for a symmetric second-
rank tensor with a zero trace.

In some cases it is simpler to consider the distribution ofunsortedprincipal valuesvii
(i = x, y, z) which we denote by lower case, rather than as in equation (2). We define the
ratio τ ≡ (vxx − vyy)/vzz for the non-sortedvii . This τ , in contrast toη, can take on any
real value:−∞ 6 τ 6 ∞. For any physical property related to a second-rank tensorM̃,
analogous ratios may be defined. In the case that the trace ofM̃ is nonzero, the tensor
elementmzz is replaced bymzz − tr(M̃)/3 in the definition ofτ . Therefore it is useful to
express the probability density ofη, p(η), from that ofτ , f (τ), where−∞ 6 τ 6∞. It is
a simple matter to derive the relationship betweenτ andη (an interchange of the principal
axes):

η =

|τ | 06 |τ | 6 1

|3− |τ ||
1+ |τ | 16 |τ |.

Defining furtherg(τ) = (1+ τ 2/3)(f (τ )+ f (−τ)), we calculate:

(1+ η2/3)p(η) = g(η)+ g
(

3− η
1+ η

)
+ g

(
3+ η
1− η

)
.

For some distributionsf (τ), or the symmetrized form(f (τ )+f (−τ))/2, the form remains
unchanged when we transform top(η). A simple example of this isf (τ) ∝ 1/(1+ τ 2/3),
that is forg(τ) = constant. A more relevant case, which will be discussed in section 3, is:

f (τ) ∝ |τ(1− τ
2/9)|

(1+ τ 2/3)5/2
.
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In some NMR studies using magic angle spinning, the non-sorted principal valuesvii have
been assumed to be Gaussian random variables [39]. To illustrate the usefulness of the
previous relations, we will assume this here, and that the distributions are identical. AsṼ

is a zero trace tensor,〈vxx + vyy + vzz〉 = 0. Their mean value is also zero:m = 〈vii〉 = 0,
and the common variance isσ 2 = 〈v2

ii〉, for any i = x, y, z. We denote the Gaussian
random variables asN (m, σ 2). In the case considered here, theN (0, σ 2) variables are
correlated with a correlation coefficientρ. Here, ρσ 2 = 〈viivjj 〉 for i 6= j . The sum
〈(vxx + vyy + vzz)2〉 = 3σ 2(1 + 2ρ). Since Ṽ is a zero-trace tensor, this is equal to
zero. The varianceσ 2 is non-zero so that this has the solutionρ = −1/2. By contrast,
the Gaussian variables(vxx − vyy) (with N (0, 3σ 2)) and vzz are independent as they are
uncorrelated [50]:〈(vxx − vyy)vzz〉 = 〈v2

yy〉 − 〈v2
xx〉 = 0. The distribution ofτ is thus a

Lorentz distribution [40]:

f (τ) = 1

π
√

3

1

1+ τ 2/3

that is:

p(η) = 6

π
√

3

[
1

1+ η2/3

]
(3)

with a mean〈η〉 = 3
√

3 log(4/3)/π ≈ 0.476. The QS distribution (QS is defined in
equation (4)) derived from the previous Gaussian assumptions is aχ -distribution withn = 2
degrees of freedom (see equation (28), subsection 4.1) as found also for the so-called Coey-
model (see subsection 4.3). The latter distributionp(η) in equation (3) is furthermore the
one calculated by Varret and Henry [30] for the Coey model (after correcting an error in
their dψ/dη given as∝ (1+ η2/3) instead of the correct∝ (1+ η2/3)−1).

The QS for1
2− 3

2 isotopes is proportional to1 defined in equation (3) (we seteQ/2= 1
wheree is the electric charge of the electron, andQ is the nuclear quadrupole moment).

12 = V 2
zz

(
1+ η

2

3

)
= 2

3
S2. (4)

Following Czjzeket al [1], we define five real parametersU1, . . . , U5 which are directly
deduced from the irreducible spherical tensor associated with the EFG tensorṼ .

U1 = vzz/2= 1

2

∑
n

(qn/r
3
n)(3 cos2(θn)− 1)

U2 = vxz/
√

3=
√

3
∑
n

(qn/r
3
n) sin(θn) cos(θn) cos(φn)

U3 = vyz/
√

3=
√

3
∑
n

(qn/r
3
n) sin(θn) cos(θn) sin(φn)

U4 = vxy/
√

3=
√

3

2

∑
n

(qn/r
3
n) sin2(θn) sin(2φn)

U5 = (vxx − vyy)/(2
√

3) =
√

3

2

∑
n

(qn/r
3
n) sin2(θn) cos(2φn)

(5)

where we have also given the forms valid for a sum over point chargesqn with polar co-
ordinates (rn, θn, φn). In the above, we correct printing errors in equation (3) of [1] where
sin2(φn) and cos2(φn) have to be replaced by sin(2φn) and cos(2φn) respectively. (Note
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our notation for theU differs somewhat from those of Czjzeket al.) The variableS2 (note
Czjzeket al [1] usedS) from equation (3) is defined by

S2 = 6
5∑

m=1

U2
m =

∑
i,j=x,y,z

v2
ij =

3

2
12. (6)

If we now consider an amorphous solid in a fixed laboratory frame of reference, we can look
for the five-dimensional distribution of the elements of the EFG tensorP(U1, . . . , U5). The
five-dimensional vectorU = (U1, . . . , U5) therefore constitutes our random vector. As it
is not always clearly stated in the literature, we emphasize that the frame of reference must
remain fixed from site to site when the distribution of the EFG tensor is investigated just as
we would do for studying the distribution of a random vector, such as the hyperfine magnetic
field Bhf . If, on the contrary, we want to study the distribution of the two parametersVzz
andη, it is necessary to diagonalize the EFG tensor from site to site.

3. Statistical invariance by rotation

The most general idea on the structure of amorphous solids is that they are isotropic on
average [1]. Such an idea can be checked experimentally, for instance from scattering
experiments, and in structural models (see section 4.2). For our present problem, this means
that the distributionP(U1, . . . , U5) remains invariant under any rotation of the frame of
reference. In the rest of the text, the simplified notationP( ) will often be used to represent
a probability distribution of the set of random variables included in the brackets( ). That
‘P ’ is used does not imply, except otherwise stated, that the variousP( ) distributions
are identical. It is the bracket content and the context that give the specific meaning of
everyP( ). For instance, the distributionP(U1) is the marginal distribution ofU1 that is
obtained by integrating the distributionP(U1, . . . , U5) overU2, . . . , U5. We emphasize that
statistical isotropy of the EFG tensor does not imply any local structural isotropy as seems
to be sometimes misleadingly believed.

Consider the example of an amorphous solid in which the EFG at a given probe can
be calculated. This can be done from electronic structure calculations [41, 42] for a cluster
made up of a central atom and of a certain number of surrounding atoms. The cluster may
be restricted in some cases to the first nearest neighbours of the central atom defined for
instance by a Voronoi or a radical Voronoi construction. In the latter solid, we consider a
given cluster and all clusters that are identical to it within infinitesimal atomic displacements.
(The accepted displacements may actually increase with the distance to the central atom
without resulting in significant changes of the EFG tensor.) Statistical isotropy of the EFG
tensor will result from the fact that the distribution of orientations of the EFG principal axis
system is isotropic for any cluster type that can be defined in the amorphous solid.

Similarly, the endpoints of unit vectors of a local frame of reference associated with the
considered cluster, and defined by some construction method, will span uniformly a unit
sphere. The latter condition implies nothing about the isotropy of the geometric arrangement
of atoms in a cluster. In actual amorphous solids, slight deviations from the previous ideal
model may take place according to the scale at which they are looked at (see section 4.2).

The general conditions that must be fulfilled by the elements of a Hamiltonian matrix,
invariant under linear orthogonal transformations, or by tensors for homogeneous isotropic
disordered systems, have been worked out by various authors (for instance see [43–49]).
Some conditions are simple to derive as explained below for the case of the EFG tensor.
The physically reasonable assumption of the existence of the moments of order 1 and 2,
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that is of 〈Ui〉 and 〈Ui, Uj 〉, whateveri and j , is made in the following. The method
consists of the following steps. First we rotate the frame of reference by the Euler angles
(α, β, γ ). Then the new tensor elementsv′ij and thus the new vector componentsU ′k are

expressed in terms of the old onesUk (see appendix A). Then for a giveni andj , v′ij
d= vij

for i, j = x, y, z, or U ′k
d= Uk. We denote two random variablesa and b with identical

distributions asa
d= b. A rotation of the arbitrarily selected frame of reference around the

[111] direction exchanges the Ox, Oy and Oz axes and shows thus thatvxx , vyy and vzz
have identical distributions. As the trace is zero, the averages〈vxx〉 = 〈vyy〉 = 〈vzz〉 = 0
and thus we deduce from equation (4) that the averages〈U1〉 = 〈U5〉 = 0. If we rotate
the frame of reference byπ/2 around the Ox axis (α = 3π/2, β = γ = π/2), we deduce

from for instance appendix A (vxy =
√

3U4) that vxy
d= vxz d= −vxy andU4

d= −U4
d= U2.

The distributions ofvxy and ofvxz, and therefore those ofU2 andU4, are symmetric about
their mean:〈vxy〉 = 〈vxz〉 = 〈U2〉 = 〈U4〉 = 0. Identical conclusions are obviously valid
for vyz andU3. If we rotate the frame of reference byπ/4 around the Ox axis, we deduce,

for instance from appendix A (vxy =
√

3U4), thatvxy
d= −vxy wherea

d= b means that the
random variablesa andb are identically distributed. The distribution ofvxy and therefore
the distribution ofU4 are thus symmetric about their mean:〈vxy〉 = 〈U4〉 = 0. Identical
conclusions are obviously valid forvxy andU2 as well as forvyz andU3. If we rotate
the frame of reference byπ/4 around the Oz axis (α = π/4, β = γ = 0), we obtain the
following EFG tensor in the new frame of reference:

1

2

[
vxx + vyy + 2vxy vyy − vxx vxz + vyz

vyy − vxx vxx + vyy − 2vxy vyz − vxz
vxz + vyz vyz − vxz 2vzz

]
. (7)

This proves that the following distributions are identical, as given by

vxy
d= 1

2(vyy − vxx)
d= −vxy. (8)

This shows thatU5 andU4 are identically distributed. Similar rotations, the effects of which
on theUi are expressed by the relations given in appendix A, allow us finally to write:

U5
d= Ui i = 2, 3, 4. (9)

As vxx , vyy andvzz are identically distributed, we deduce that:

〈v2
xx〉 = 〈v2

yy〉 = 〈v2
zz〉

and thus using equations (4), (5) and (9) that:

〈U1U5〉 = 0

〈U2
1 〉 = 〈U2

i 〉 = 1
20〈12〉 i = 2, . . . ,5.

As U5 andUi , i = 2, . . . ,5 are identically distributed, we also deduce that:

〈U1Ui〉 = 0 i = 2, . . . ,5.

If similar methods are applied to products of random variables, conclusions can also be
obtained about the elements of the (variance) covariance matrix3̃ of the random vectorU
the elements of which are:

3ij = 〈UiUj 〉 − 〈Ui〉〈Uj 〉
and about higher-rank correlations. The latter correlations are less important for the present
problem. Given below are the essential conditions which must be fulfilled by the five
elementsUk for the case of statistical isotropy of the EFG tensor [43–49].
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(1) The conditions are:

〈Ui〉 = 0 i = 1, . . . ,5

〈U2
i 〉 = 1

20〈12〉 i = 1, . . . ,5 (10)

〈UiUj 〉 = 0 i 6= j, i, j = 1, . . . ,5.

There are thus no correlations between the off-diagonal and either the diagonal or the off-
diagonal tensor elements. The elements of the covariance matrix are given by:

3ij = 〈UiUj 〉 − 〈Ui〉〈Uj 〉 = 1
20δij 〈12〉 i, j = 1, . . . ,5 (11)

whereδij is the Kronecker symbol. In a more compact notation:

3̃ = 1
20〈12〉Ĩ5 (12)

where Ĩ5 is the unit (5× 5) matrix. TheUk are thereforeuncorrelatedrandom variables.
However in generalthis does not mean that they are independent(for example see section 5,
and [50], p 278).

(2) The invariance hypothesis implies that theUi , i = 2, . . . ,5 are identically distributed
and that they have a symmetrical distribution with a zero mean. As we shall see in section 5,
U1 has in general a different,a priori asymmetric, distribution with a zero mean. Porter and
Rosenzweig [51] (see also references [47] and [52], p 52) have proven that the assumptions
of statistical isotropy of random matrices and of independence of elements determine a
unique ensemble, called the Gaussian orthogonal ensemble (GOE) in the case of random real
symmetric matrices. Similar and also more general relations have been derived recently by
Averbuch for spherical tensors of any rank [49]. Applied to the EFG tensor, these theorems
prove that if statistical isotropy and independence of theUi are assumed (see appendix B)
everyUi has a normal (Gaussian) distributionN(m, s2) with a zero meanm = 0 and a
variances2 = 〈12〉/20.

As shown by Czjzeket al [1], the transformation from theUi to the set of
five variables (Vzz, η) including the three Euler angles (α, β, γ ) introduces a Jacobian
V 4
zzη(1 − η2/9) sin(β). The origin of this is worth being recalled here. If we first

perform a transformation fromUi to principal values, we obtain a Jacobian which consists
of two separate factors. The first one comes from a Vandermonde determinant [52],
|Vxx − Vyy ||Vxx − Vzz||Vyy − Vzz|, and yields|V 3

zz|η(1− η2/9). A second transformation
from two independent principal values to (Vzz, η) results in a supplementary Jacobian which
is proportional toVzz. Thus the first factor is finally∝ V 4

zzη(1− η2/9). The second factor,
∝ sin(β), related to the Euler angles, is associated with the uniform measure on the three-
dimensional sphere.

This discussion also emphasizes the basic similarity between the zero probability of
finding an EFG withη = 0, and the level-repulsion found in random-matrix theory, as both
originate from geometrical correlations due to the Jacobian. (For a recent discussion of this
problem, see [53, 54].)

The previous transformation yields a general bivariate distribution of (Vzz, η) for
statistically isotropic disordered solids (see [1], equation (11)). This is given by the
following expression (where12 is given by equation (3)):

f (Vzz, η) =
V 4
zzη√

2πσ 5

(
1− η

2

9

)
F(D3,12) (13)

D3 ≡ V 3
zz(1− η2) (14)

with associated marginal distribution forVzz denotedfe(Vzz) and forη denotedfa(η). fe
andfa are given by integrating equation (13) over allη or over allVzz respectively. (Note
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Czjzeket al [1] have usedD instead ofD3.) 12 is the second order andD3 the third order
invariant of the EFG tensor. For non-isotropic solids,F(D3,12) in equation (13) has to be
replaced byF(Vzz, η). The symmetric Czjzeket al model (for the caseβ = 0, see [1]) is
obtained for:

F(D3,12) = exp(−Vzz2[1+ η2/3]/(2σ 2)) = exp(−12/2σ 2).

This model we have named the Gaussian isotropic model (GIM) for reasons made clear in
the next section. The associatedfa(η) marginal distribution is then calculated to be:

fa(η) = r(η) = 3η(1− η2/9)

(1+ η2/3)5/2
. (15)

In the following, r(η) will represent thismodel distribution. The average value of the
asymmetry parameter and of its square can be calculated to be:

〈η〉 = 2
√

3− (3
√

3/2) log(3) ≈ 0.609 82

〈η2〉 ≈ 0.430 78.

The standard deviation of the asymmetry parameter is given by:

ση ≡ 〈(η − 〈η〉)2〉1/2 = (42− 24
√

3− 〈η〉2)1/2 ≈ 0.242 68

so that the ratio is given by:

ρη = ση

〈η〉 ≈ 0.398.

We could as well have expressed the Jacobian discussed above in terms ofτ (see
section 2), the ratio of non-sorted principal values, instead ofη. Then we would have
derived a distributionf (τ) identical withr(η) (equation (15)), except for additional absolute
value signs. As discussed in section 2, such anf (τ) indeed remains of the same form as
r(η) when the distribution ofη is calculated from that ofτ .

The marginal distribution forVzz is calculated to be:

fe(Vzz) = 1

σ

√
2

π

[(
3V 2

zz

2σ 2
− 1

)
exp

(−V 2
zz

2σ 2

)
+
(

1− 4V 2
zz

3σ 2

)
exp

(−2V 2
zz

3σ 2

)]
(16)

where σ 2 is given by 〈12〉/5. The maximum is atVzz/σ ≈ 1.867 1035. This form is
especially useful in cases where the experimental sensitivity toη is not very high, such as
in the case of57Fe Mössbauer spectroscopy [16]. We note the following properties of this
marginal distribution:

• fe(Vzz) varies asV 4
zz for Vzz → 0.

• The square average ofVzz is given by:

〈V 2
zz〉 = σ 2(14− 3

√
3)/2= 〈12〉(14− 3

√
3)/10≈ 0.8804〈12〉.

• This is well approximated by:

〈V 2
zz〉 ≈ 〈12〉/(1+ 〈η2〉/3) ≈ 0.8744〈12〉

or even:

〈V 2
zz〉 ≈ 〈12〉/(1+ 〈η〉2/3) ≈ 0.8897〈12〉.



10724 G Le Caër and R A Brand

-5 -4 -3 -2 -1 -0 1 2 3 4 5

Vzz/σ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

η

 0
.1  0

.1

 0
.5

 0.5 0
.9

 0.9

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
η

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f a 
(η

)

(b)

-5 -4 -3 -2 -1 0 1 2 3 4 5
VZZ/σ

0.0

0.1

0.2

0.3

0.4

f e(
V

Z
Z
) 

σ

(c)

Figure 1. (a) Contour map of the Czjzek probability function, equation (13). (b) Marginal
distribution fa(η) given by equation (15). (c) Marginal distributionfe(Vzz) given by
equation (16).Vzz is normalized toσ whereσ 2 = 〈12〉/5.
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A Cartesian contour map of equation (13) is shown in figure 1(a) whereVzz has been
normalized toσ . Figure 1(b) and (c) give the marginal distributionsfa(η) and fe(Vzz)
respectively. As has been pointed out by Czjzek [55], a Cartesian contour mapdoes not
represent in an adequate way the connectivity of the parameter space. Czjzek pointed
out that two symmetrical points (Vzz, η) and (−Vzz, η) are connected both by a variation
through the pointVzz = 0 and by a variation throughη→ 1. Whenη = 1, Vxx = 0, while
Vyy = −Vzz. Thus, the sign ofVzz cannot be defined forη = 1 and the two points (Vzz > 0,
η = 1) and (Vzz < 0, η = 1) should be connected on the graph to represent this. In addition,
the connection throughVzz = 0 but η 6= 0 is clearly unphysical. Czjzek introduced a polar
plot (r, φ) based on the variable transformation:

V 2
zz(1+ η2/3) = r2

V 3
zz(1− η2) = r3 sin(3φ).

In this representation, the segmentφ ∈ (−π/6, π/6) contains all information. A contour
map for this plot is shown in figure 2. The upper segment representsVzz > 0, the lower
Vzz < 0, andφ = 0 representsη = 1. η = 0 is given byφ = π/6 for positiveVzz, and by
−π/6 for negativeVzz. The transformation from (r, φ) to (Vzz, η) is given in table 1.

η = 0

η = 0

η = 1

VZZ > 0

VZZ < 0

V ZZ
/σ

V
ZZ /σ

1

1

2

2

3

3

4

4

Figure 2. Contour map of the Czjzek probability function, equation (13) in polar coordinates.
η = 1 is the horizontal axis.Vzz is normalized toσ , and the dashed lines are lines of constant
Vzz. Radial lines are lines of constantη.

Table 1. Transformation forr, φ to Vzz, η for the EFG distribution plot of Czjzeket al.

Variable Vzz < 0 Vzz > 0

Vzz(r, φ) −r cos(π/6+ φ) r cos(π/6+ φ)
Vzz(x, y) − 1

2(
√

3x − y) 1
2(
√

3x − y)
η(φ)

√
3 tan(π/6+ φ) √

3 tan(π/6+ φ)
η(x, y)

√
3(x +√3y)/(

√
3x − y) √

3(x −√3y)/(
√

3x + y)

An interesting conclusion about ‘universal’ features of the distributionr(η) of the
asymmetry parameterη which does not seem to have been emphasized up to now can
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be deduced from equation (13). The marginal distributionfa(η) will indeed be identical
with the modelr(η) in the following cases among others:

(A) We assume that the function:

F(D3,12) = G(12)

only depends on:

1 = |Vzz|
√

1+ η2/3

that is, only on the modulus of the EFG tensor. Then equation (13) may be rewritten as
follows:

f (Vzz, η) ∝ 14G(12)
η(1− η2/9)

(1+ η2/3)2
. (17)

By making the change in variables from (Vzz, η) to (1, η), we obtain the equivalent bivariate
distribution function:

h(1, η) ∝ 14G(12)
η(1− η2/9)

(1+ η2/3)5/2
. (18)

If the following condition is fulfilled the distribution ofη is r(η) as given by equation (15).
This condition is that the integration over1 which has to be performed in equation (18)
to calculate the marginal distribution ofη must not contribute to an extraη-dependent
term. The integration over1 must therefore be performed in a rectangular domain given
by 06 η 6 1, and11 6 1 6 12. From this, conditions aboutVzz may be derived. The
universalr(η) distribution (equation (15)) will be found in particular in disordered solids
verifying equation (18) and in which14G(12) is defined for1 ranging from 0 to∞
whateverη. In practice it is sufficient that the upper bound be large as compared to the
standard deviation of1, given by:

σ1 ≡ 〈(1− 〈1〉)2〉1/2.
It is deduced from equation (17) that:

prob(Vzz > 0) = prob(Vzz < 0) = 1/2.

(B) Keeping the latter hypothesis about the range of definition of14G(12), we assume
now that there is a hole in theVzz distribution at the origin:fe(Vzz ≈ 0) ≈ 0, as observed
in many models and in many actual disordered solids [1]. It is thus possible to relax the
symmetry condition by supposing thatf (Vzz, η) (equation (13)) is such that forVzz > 0
(where−1/26 α 6 1/2):

f +(Vzz, η) = ( 1
2 + α)ft (12) (19)

and forVzz < 0:

f −(Vzz, η) = ( 1
2 − α)ft (12). (20)

The ‘shapes’ off ±(|Vzz|) are thus identical forVzz > 0 andVzz < 0 but their respective
weights differ. To obtain equations (19) and (20), we writeF(D3,12) as:

F(D3,12) = G(12)( 1
2 + αs(D3)) (21)

wheres(x) is a function which mimics the behaviour of the sign(x) function. In practice an
approximate sign(x) behaviour is only needed in a range in whichft (12) is significant,s(x)
being equal to−1 for x < 0 and to+1 for x > 0. Such a function must vary very rapidly
from −1 to+1, typically in a short interval dVzz centred on zero in whichfe(Vzz ≈ 0) dVzz
is small. Examples are for instance erf(x) or tanh(x). Further examples include a piecewise
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linear functiony, wherey = ax (with a > 0) for x ∈ (−1/a, 1/a), and outside this interval,
y = −1 for x 6 −1/a, andy = 1 for x > 1/a. Such hypotheses, although they may seem
rather artificial, still lead to equation (18) being valid forh(1, η).

The distribution r(η) given in equation (15) may conceivably be valid in more
complicated cases than those dealt with here. A model which is described in section 6
(equation (52)), yields for instance distributionsfa(η) depending parametrically onx, where
(1− x) measures the deviation from GIM. These deviate little fromr(η) for x > 0.5 (as
will be shown later in figure 16). The marginal distributionsf ±e (|Vzz|) have rather similar
although not identical ‘shapes’, in particular for when the parameterx is larger than≈0.6.
(Figure 15 presented later comparesf +e (|Vzz|) with f −e (|Vzz|).) The extended models of
Czjzek [29] forn = 3 and 4 also yield distributionsfa(η) which are very well approximated
by r(η) (see subsection 4.2.2). In cases (A) and (B), the integration ofh(1, η) overη yields
the QS distribution. Reciprocally the distribution of (|Vzz|, η) is simply given by the product
of the QS distribution byr(η) and by(1+ η2/3)1/2.

Supplementary experiments, for instance using applied magnetic fields, allow
determination of the distribution of (Vzz, η) from the distribution of (|Vzz|, η) and from
the respective weights of the positiveVzz > 0 and negativeVzz < 0 parts. Such models
may thus have a practical importance. Experimental average asymmetry parameters close
to 〈η〉 ≈ 0.6 are very often quoted in the literature for disordered solids ([7, 32, 56, 57 58]
among others). The previous assumptions may possibly be approximately verified in various
amorphous alloys but experimental and simulation studies remain to be performed to
establish their actual range of validity. Conditions which yield the aforementioned EFG
and r(η) distributions (such as (A), (B) or further conditions to be established) may be
checked more convincingly with physically sound calculations [41, 42] in structural models.
Moreover, recent methods allow constructing quite realistic models of amorphous solids
(see [59–61]).

Model (A) is found for instance when the concentration of point defects in cubic solids
is small and when the electric field gradients result from randomly distributed unscreened
point charges as investigated by Stöckmann [2]. More generally model (A) is found when
the contributions of the individual defects linearly superpose to give the total field gradient as
shown for instance by Cohen and Reif [3]. In the latter case, the distributionP(U1, . . . , U5)

is then approximatelya multivariate (n = 5) Cauchy distribution. That is, as shown by
Stöckmann (equations (40) and (41) of [2]), it is proportional to(1(0)2 + 12)−3. The
actual distribution must indeed be truncated as compared to the Cauchy distribution as it
cannot have diverging moments. Such a Cauchy distribution is clearly rotationally invariant
and further yields an example of a statistically isotropic distribution of a vectorU whose
componentsUi are not independent as is required by the Porter–Rosenzweig theorem (see
appendix B).

Greǹeche et al [6, 57] have studied continuous random networks of corner-sharing
octahedra (simulating amorphous FeF3). They have found prob(Vzz > 0) ≈ prob(Vzz < 0)
and a distribution ofη very close to the distribution of equation (15) (see [57], figure 6).
Such models may possibly verify the assumptions of case (A). It is important to emphasize
that their results differ from the GIM predictions because the QS distribution is not given by
equation (28) withn = 5 (section 4.1) but is well approximated by the same equation with
n = 2.9 ([57], figure 5). An example which may perhaps illustrate case (B) is amorphous
Fe24Zr76 as a mean〈η〉 ≈ 0.67±0.07 and prob(Vzz > 0) = 1 were reported from M̈ossbauer
spectra recorded in applied fields [7]. A mean〈η〉 ≈ 0.5 and prob(Vzz > 0) = 1 were
reported from M̈ossbauer spectra of iron-based oxide glasses Fe2O3–BaO–B2O3 recorded in
applied fields [58]. The models discussed above may also be useful in other fields as shown



10728 G Le Caër and R A Brand

for instance by recent EPR studies of glasses [37, 62]. It is likely that ther(η) distribution
is not very rapidly distorted when deviations occur from the ideal models described above
as already shown by the early computer simulations of Czjzeket al [1] for amorphous
solids with random ionic coordination. To conclude, the distributionr(η), equation (15),
appears to be rather robust, being an excellent approximation of manyfa(η). As discussed
above, its general validity is basically related to correlations between principal values of the
EFG tensor induced by the Jacobian of the transformation from theUk to (Vzz, η, α, β, γ )
[53, 54]. Ther(η) distribution is therefore the mosta priori reasonable guess for anunknown
marginal distribution ofη in an amorphous solid.

4. The multivariate normal distribution: Gaussian isotropic model and degenerate
Gaussian models

As the multivariate normal distribution plays an important role in the EFG distribution
models, we recall here its definition. We first define the characteristic function8(t) of a
random variablex characterized by a repartition function given by:

F(x) = prob(X 6 x) =
∫ x

−∞
dF(x ′)

is given as usual by the following integral:

8(t) = 〈exp(itX)〉 =
∫ +∞
−∞

exp(itx) dF(x). (22)

For an n-dimensional random variableX, the scalar variablest and X are replaced
by the n-dimensional vectorst and X respectively and the producttX by a scalar
product t · X in an n-dimensional Fourier integral. The characteristic function of an
N (m, σ 2) Gaussian random variableX (where m = 〈X〉 and σ 2 = 〈(X − m)2〉) is
8(t) = 〈exp(itX)〉 = exp(imt−σ 2t2/2) [50, 63, 64], whose value att = 1 is exp(im−σ 2/2).
The multivariate normal distribution of ann-dimensional random vectorX, N (m, 3̃) is
defined in the most general case by its characteristic function and not by its distribution
function as3̃ may be singular [32, 50, 56, 57].m = 〈X〉 is the n-dimensional vector of
the means and̃3 the symmetric non-negative definite (n × n) covariance matrix whose
elements are3ij = 〈XiXj 〉 − mimj . The random variableZ = t ·X [64], wheret is the
vector with elements (t1, . . . , tn), is a linear combination of Gaussian variables. It is thus
a Gaussian random variableN (t · m, tt3̃t) where tt is the transpose oft. Therefore
〈exp(iZ)〉 = 〈exp(it · X)〉 = exp(it · m − tt3̃t/2). This latter function oft is the
characteristic function ofX:

8(t) = exp(it ·m− 1
2
tt3̃t). (23)

A random vectorU having the distributionN(m, 3̃) is said to be a normal vector. Its
distribution is thus entirely defined by giving the vector of means and the matrix of variances
and covariances. If̃3 is non-singular, the probability density functionP(U1, . . . , Un) can
be obtained by an inversion of the characteristic function:

P(U1, . . . , Un) = 1√
(2π)n det(3̃)

exp

[
−1

2
t (U −m)3̃−1(U −m)

]
. (24)

If n = 5 and if the five random variablesUk are linearly dependent onp Gaussian
independent variables (wherep < 5), the normal distribution is degenerate and the matrix
3̃ is singular, with rankp < 5 [50, 63–65]. In this case, the probability density function is
no longer given by equation (24) withn = 5.
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4.1. Five degrees of freedom

If the EFG tensor is statistically invariant by rotation and ifP(U1, . . . , U5) is multivariate
normal, equations (12) and (24) yield forn = 5:

P(U1, . . . , U5) =
5∏
i=1

P(Ui). (25)

TheUi are independent and normally distributed:

P(Ui) = 1

s
√

2π
exp

(
−U

2
i

2s2

)
(26)

with s2 = 〈12〉/20 (equation (12)). Conversely, if theUi are independent (n = 5), the
covariance matrix is diagonal and non-singular and theUi are Gaussian random variables,
as proven in appendix B. Forn = 5, we recover [8, 9, 16, 28] the model of Czjzeket al [1]
for random atomic packings but without the small asymmetric contribution found in such
models. That is we findβ = 0 [1] in the joint distribution functionf (Vzz, η) derived by
the latter authors from their numerical simulations (see [1], equation (22)):

f (Vzz, η) = Vzz
4η√

2πσ 5

(
1− η

2

9

)
exp

[
− V

2
zz

2σ 2

(
1+ η

2

3

)]
. (27)

It is worthwhile recalling that the latter distribution has been derived not only for random
amorphous solids [1], but also for large concentrations of defects in cubic systems [2]. Our
derivation proves that it is also valid in all cases where the physics that determines the EFG
distribution fulfils the conditions of applicability of the central limit theorem (see for instance
[50] and section 5). The components of the EFG tensor are then sums over a large number
of random terms, each of which if considered individually has a reduced importance [8, 9].
This strongly contradicts the still-used claim [66] that the previous functional form (as given
by equation (27)) is only valid for the case of an EFG tensor based on a point-charge model.
It will also be true for long-ranged oscillating potentials, for instance in aluminum-based
Al–transition metal (TM) disordered or amorphous solids [9] where strong and long-range
interactions between Al and TM play an important role [67]. The QS distribution is readily
deduced from equations (3), (5), (25) and (26), which lead to aχ2 distribution for12 with
five degrees of freedom, that is aχ distribution for1:

Pn(1) = 1

2(n−2)/2σn0(n/2)
1n−1 exp

(
− 1

2

2σ 2

)
(28)

with n = 5 andσ 2 = 4s2 = 〈12〉/5. 0(n/2) is the usual gamma function. The model
given by equations (25) to (28) we call the Gaussian isotropic model (GIM) for reasons now
obvious [8, 9, 16, 28]. It is a universal reference model, but devoid of structural information,
that is made possible in some systems by the physics of the EFG. The GIM allows calculating
all kinds of distributions related to the EFG tensor (equations (15) and (16), [16] and Le
Cäer, unpublished). By symmetry, the probabilities of findingVzz > 0 or Vzz < 0 are equal
to 1/2. The ratio defined by Levy Yeyatiet al [56] given by:

ρz =
√
〈V 2
zz〉 − 〈|Vzz|〉2
〈|Vzz|〉 = σ|Vzz|

〈|Vzz|〉
is calculated to be equal to:

1
5

√
14π − 3

√
3π − 25≈ 0.326 07
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for the GIM [16]. The latter authors [56] quote values close to the GIM values with
〈η〉 = 0.67 and withρz = 0.36 from experiments in a-Zr70Cu30. From rather involved
calculations in a structural model with 100 atoms they find〈η〉 = (0.64, 0.63) and
ρz = (0.30, 0.26). A value ρη = ση/〈η〉 ≈ 0.42 (see section 3) is further quoted for the
same model in [32]. As the GIM is in the end dominated either by the universal character
of the central limit theorem or by a trend towards independentUk, it is not in a one to one
correspondence with a given disordered structure. Forn = 5, it is worth emphasizing again
[8, 9, 28] that the observation of the distribution of Czjzeket al [1], equation (27), does not
imply that a given amorphous structure can actually be described as a dense random packing
of atoms. A good experimental counterexample seems to be amorphous gallium. The EFG
distribution for a dense random packing model agrees with the PAC results but this model is
known to fail to account for the structure factor observed in diffraction experiments [85–87].
The power of the central limit theorem that works for additive random variables must not
be neglected when dealing with such experimental results. Supplementary arguments on
this point will be presented in section 6.

Figure 3. Relationships between three possible conditions for the EFG tensor. The GIM model
corresponds to A+C. We denote a model with conditions B+C as ‘degenerate Gaussian’. The
Coey model would correspond to an example of A+ B.
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4.2. Fewer than five degrees of freedom

Quite curiously, the models that lead to a QS distribution given by equation (28) with
n = 1, . . . ,4 (often even extended to non-integer values less than five) are called ‘shell
models’ in the literature. The latter name istotally unjustifiedas it suggests that the EFG
tensor still possesses statistical invariance by rotation. This is in contradiction with the
assumptions needed to derive such models as will be proven below (see also section 5).
Czjzek has assumed in a later publication [29] that theUk are not independent variables and
that they are linear functions ofn other variablesεj with n < 5, where ‘the parametersεj are
Gaussian centred at the origin’ [29]. This is equivalent to assuming that the five-dimensional
random vectorU has a degenerate multivariate normal (Gaussian) distribution since it is
linearly related to ann-dimensional normal vectorε with n < 5. The multivariate normal
distribution is entirely determined by an expectation vector (here zero) and a covariance
matrix (section 4 and equation (23)). Thus the immediate consequence of the previous
assumptions is indeed [50, 64, 65] that the covariance matrix ofU , denoted3̃, is singular
with a rank n < 5. As 3̃ cannot be simultaneously singular and proportional toĨ5

(equation (12)), the EFG tensor cannot therefore be statistically invariant by rotation. The
different mathematical relationships which are discussed are given schematically in figure 3.
The GIM model would correspond in this figure to conditions A+ C. The conditions
A + B + C are impossible, but any of the combinations A+ B, A + C or B+ C are
possible. For the reasons discussed above, it would be desirable to abandon the confusing
and erroneous name of ‘shell models’ (see also section 5 and more particularly form = 3)
and to replace it by one of the following two possibilities given below.

(1) It could be termed a ‘degenerate Gaussian model’ if Czjzek’s assumptions about the
EFG tensor distribution [29] are explicitly taken into consideration (condition C),n is thus
an integern < 5 (condition B). The EFG tensor cannot be statistically invariant by rotation.
We will denote this model as Cz(n). It is discussed below in section 4.2.2.

(2) It could also be termed a ‘generalizedχ model’ if we only assume equation (28) to be
valid with integer or non-integer values ofn. This can be used for the sole purpose of fitting
a QS distribution without any implication for the EFG tensor distribution. Distribution (28)
is a particular subfamily of what are called in [68] the generalized gamma distributions. As
it is moreover a generalization of aχ distribution to non-integer values ofn, we propose
to use here the name ‘generalizedχ models’.

Whatevern > 1, the average〈1〉 is equal to
√

2σ0((n + 1)/2)/0(n/2), and the
maximum of the probability distribution is located at1max = σ

√
n− 1. The variance

σ 2
1 = 〈(1 − 〈1〉)2〉 is such thatσ 2

1 + 〈1〉2 = nσ 2. An empirical relationship, which may
be useful in practice, holds approximately between the three latter characteristics:

〈1〉 = 0.85411max+ 0.5956σ1

with a relative error less than 9×10−3 for n 6 5. Only the ‘generalizedχ models’ and not
the ‘degenerate Gaussian models’ have been actually checked in Mössbauer spectroscopy
as experimental evidence of anisotropic effects has never been looked for or reported up to
now. As given by figure 3, a model including condition B must be checked for condition A
(P(U1, . . . , U5) not multinormal) or condition C (P(U1, . . . , U5) not invariant by rotation).

The proposed model names will be used in the rest of the text. We stress that one must
not confuse the obvious rotational invariance of the quadrupole splitting (the modulus of
the EFG tensor, equation (6)) with the statistical rotational invariance of the EFG tensor
itself. Consequently QS measurements cannot test the validity of the assumptions made by
Czjzek [29]. Such assumptions may however be checked with structural models (section 3)
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by studying the distribution of the EFG tensor itself, as done for instance in section 5,
and not only the QS distribution. It would be possible using random rotations to produce
models which have the same QS andf (Vzz, η) distributions as the ‘degenerate Gaussian
models’ (n < 5) and which are simultaneously statistically isotropic. In such models, the
distributions ofU , which depend onn, cannot be multivariate normal.

4.2.1. Structural considerations.To show the problem raised by the (n < 5) ‘degenerate
Gaussian models’, we must go back to the structural models. Consider a single crystal
of some ordered compound with various sites. There are strong correlations between the
orientations of the EFG principal axes from site to site.P(U1, . . . , U5) is not invariant
by rotation. If we consider now a polycrystal, built up of a collection of the latter single
crystals, in which all crystallographic orientations occur in the sample with equal probability,
the previous invariance will be recovered, but this invariance has an artificial character. We
are not led to consider (for example for such a sample) that the significant model of the
atomic structure is that at the scale of the polycrystal (sample), but that at the level of
the single crystal. For an amorphous solid, a typical scaleL is given by the distance
at which the value of the pair correlation functions deduced from x-ray or (and) neutron
diffraction measurements cannot be distinguished from an uncorrelated distribution, that is
one to several nanometres (see for instance [69, 70]).

If the validity of the Czjzek model extension (n < 5) is established, it would mean that
the disordered solid under consideration possesses some order in the orientations of the EFG
principal axes in a volume of orderL3 and for instance at all nuclei of the probed atomic
species surrounded by similar clusters as defined in section 3. Such an orientational order,
which depends onn, would not just be of short-range character, but medium- or long-range
character, that is it would extend to distances of the order ofL. An orientational order
on distances much smaller thanL would be averaged and would produce only negligible
deviations from the expected statistically isotropic model. In the casen = 1, it can be
shown that the principal axes of the EFG tensor have the same directions at all probed
nuclei. This is a consequence of the fact thatU = xU0 +Uc whereU0 andUc are fixed
vectors andx has a Gaussian distribution with zero mean according to the assumption of
Czjzek forn = 1. As the average of every component ofU must be zero to ensure that
the QS distribution is given by equation (28) withn = 1, Uc = 0. The principal axes
of the EFG tensorṼ = xṼ0 are thus those of the fixed part̃V0 and the eigenvalues of
Ṽ are x times the eigenvalues of̃V0. The asymmetry parameter is consequently constant
η = η0 andVzz = xVzz,0 has a Gaussian distribution with zero mean. (Note thatη is only
defined forx 6= 0 but the probability ofx = 0 is zero.) This anisotropy is reminiscent of
an organization of structural elements either in a crystal or in a quenched analogue of an
anisotropic fluid depending on the appropriate range of translational order [71]. New results
on degenerate Gaussian models Cz(n) are reported in the next subsection for 26 n 6 4.

Such questions have already been raised by Albenet al [72] to explain correlations
responsible for anisotropic electron scattering properties from small areas of amorphous
films. Using structural models, dense random packings and tetrahedrally bonded continuous
random networks, they concluded [72] that the scattering anisotropy is not very different
from that which occurs for random scattering but quite different from that expected for a
crystal. Dense random packing models such as the Finney model have been shown to be
macroscopically equivalent to isotropic liquids [71]. It is however important to look for
anisotropic effects at the correct scale in order to avoid averaging effects analogous to those
performed in a polycrystal in the case of crystals as furthermore such effects will generally
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be small. Very recently, Gaskell and Wallis [69] have shown from the interpretation of the
first diffraction peaks of a–SiO2 that anisotropic scattering is directly related to the presence
of periodic fluctuations in atomic density—with ‘quasi-Bragg planes’ defining a medium-
range structure at a scale of≈1 nm. Such characteristics would also hold for several types of
glass. Bond-orientational anisotropy has been recently observed by x-ray diffraction in thin
amorphous Tb–Fe–Co films [73]. Tomida and Egami [74] have also performed computer
simulations to analyse the structural anisotropy induced by thermomechanical treatments of
amorphous solids below the glass transition temperature. In a more recent work [75], the
latter authors have analysed orientational order between local clusters, extending the study
of orientational order between bonds defined by Steinhardtet al [71].

Although cluster orientational correlations may exist in amorphous solids, their effect
on the distributions of EFG tensors at nuclei of selected chemical elements is expected to
be negligible as moreover averaging is performed at the scales at which experiments are
usually performed to probe such distributions. Unfortunately, Mössbauer spectroscopy gives
no information on the site-to-site correlations of the EFG principal axis systems. Therefore
it is not possible to know for a solid whose EFG properties show rotational invariance
whether this originates from a lack of orientational correlations, or from the latter sample
averaging effect. If the assumptions of the ‘degenerate Gaussian models’ of Czjzek [29]
or extensions of them are taken as working hypotheses, the previous discussion means that
at best only such experiments which are spatially sensitive may reveal some anisotropy in
the orientations of EFG principal axes. Examples are depth-selective conversion electron
Mössbauer spectroscopy (DCEMS) experiments or reflectivity measurements using nuclear-
resonant (forward) scattering of synchrotron radiation. Appropriate systems would include
thin amorphous films (possibly subjected to prior thermomechanical treatments such as
creep to orient the correlated regions [74]). Certainly high signal to noise ratios would be
necessary for such experiments. Such amorphous films would have to be selected in systems
whose QS distributions agrees at least approximately with the generalizedχ distribution
(equation (28) forn < 5) and better with the smallest observed value ofn. The latter
condition would be necessary for evidencing possible differences in peak intensity ratios
between DCEMS or reflectivity spectra, and bulk measurements. Amorphous Fe24Zr76 with
prob(Vzz > 0) = 1 and withn = 1 in an extension of theχ models to non-centralχ
models [7] may also be a valuable system. One supplementary experimental problem is
that it is very difficult to prove that the quadrupole splitting distribution belongs in fact to
the latter family since IS distributions may easily perturb the determination ofn, and these
distributions are generally unknown [76] (see also subsection 7.2).

In summary, the previous analysis means that the only conclusion which is consistent
with the ‘degenerate Gaussian models’ [29] but not necessarily with the ‘generalizedχ

models’ (discussion of next section) is the existence of medium-range order with strong
orientational order among clusters surrounding the probe atoms. That order would be
stronger for smaller values ofn. Experimental validations of the ‘degenerate Gaussian
models’ are lacking. We finally suggest using structural models to simulate DCEMS
Mössbauer spectra and not only QS or EFG distributions.

4.2.2. Degenerate Gaussian modelsCz(n) : 26 n 6 4. As discussed above, the two basic
assumptions of the Cz(n) models are [29]:

(a) TheUm (m = 1, . . . ,5) are not independent. They are linear functions ofn variables
Yi (i = 1, . . . , n) which are Gaussian random variables centred at the origin. We stress
again that such assumptions about the EFG distribution in the solid considered implies that
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all EFG tensors must be calculated in a unique frame of reference for all sites.
(b) The QS distribution is given by equation (28) for the corresponding value ofn.

We describe below general results obtained for Cz(n) models in which allYi are first
assumed to have the same variances2. The more general case of different variancess2

i is
also considered.

We define standard Gaussian random variablesZi with zero mean and unit variance.
The covariance matrix̃3Y with 〈YiYj 〉 = s2δij is given by:

3̃Y = s2Ĩn = s23̃Z. (29)

Ĩn is the unit (n × n) matrix, which is also the covariance matrix of then-dimensional
random vectorZ with componentsZi . Assumption (a) for Cz(n) can be written compactly
as:

U = sH̃nZ (30)

where the vectorU is written as a (5× 1) matrix, the vectorZ as a (n× 1) matrix, andH̃n
is a (5× n) matrix whose properties must be determined. Designating the transpose of any
matrix B̃ by B̃T , we calculate:

U TU = s2ZT (H̃ T
n H̃n)Z = s2ZT ÃZ. (31)

The matrixÃ = H̃ T
n H̃n is thus a symmetric (n× n) matrix. The distribution of12 (equal

to 4U TU : see equation (6)) is aχ2
n distribution withn degrees of freedom if and only if

Ã is idempotent with rankn (see theorem 5.1.1 given in [77], p 196). This means that:

Ã2 = Ã = Ĩn (32)

as the only non-singular idempotent matrices are the unit matricesĨn. (In a strict sense,
the distribution of12 is thus actually only proportional to such aχ2

n distribution but we
will ignore such subtleties here.) It is indeed a simple matter using equations (32) and
(31) to prove that12 andZTZ have aχ2

n type distribution. The previous discussion also
proves thatH̃n is an orthogonal (5× 5) matrix forn = 5 while it has orthonormal columns
for n < 5. To obtain general expressions for the distributionsPn(Vzz, η, α, β, γ ) (where
26 n 6 4) which include the constraints of the problem, we consider the following:

U = sH̃X (33)

whereH̃ is an orthonormal (5× 5) matrix. We setn elements ofX (5× 1) equal to the
n elements ofEZ, and the remaining 5− n elements equal to zero. The covariance matrix
of U is thus3̃ = s2H̃ 3̃XH̃

T where3̃X is the covariance matrix ofX, that is a diagonal
matrix with n diagonal elements equal to unity and 5− n equal to zero. The model given
by equation (33) is thus quite general, and fulfils the conditions required by Cz(n).

From equation (33) we deduce:

X = 1

s
H̃ TU . (34)

The distribution ofX is:

P(X1, . . . , X5) ∝ exp

[
− 1

2

5∑
i=1

X2
i

] 5−n∏
k=1

δ(Xj(k)). (35)

We denote byj (k), k = 1, . . . ,5− n the set of indices of those components ofX which
are equal to zero. Using equation (34), the distribution of the components ofU can be
derived:

P(U1, . . . , U5) ∝ exp

[
− 1

2s2

5∑
i=1

U2
i

] 5−n∏
k=1

δ

(
1

s

5∑
l=1

HT
j(k)lUl

)
. (36)
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A way of explaining the need for the 5− n linear constraints in equation (36) would be to
express then variablesZi in equation (30) in terms of then variablesUi : the remaining
5−n equations in (30) provide the linear constraints sought after. To derive the distribution
Pn(Vzz, η, α, β, γ ) we need to express theUi in terms of the variablesVzz, η, α, β and
γ using the relations given in appendix A.(U1, . . . , U5) represents the transformed vector
derived from a vector expressed in the principal axis frame, and whose components are thus
zero except for the first and the fifth (see equation (4)). Equation (36) can thus be written
as:

Pn(Vzz, η, α, β, γ ) ∝ V 4
zz exp

[−V 2
zz(1+ η2/3)

2σ 2

]
η(1− η2/9) sinβ

×
5−n∏
k=1

δ

(
Vzz

5∑
l=1

[Bj(k)l(α, β, γ )+ ηCj(k)l(α, β, γ )]
)

(37)

where the Jacobian of the transformation from(U1, . . . , U5) to (Vzz, η, α, β, γ ) is given by
2V 4

zzη(1− η2/9) sinβ as has been shown by Czjzeket al [1] (see also section 3). The
sum

∑5
i=1U

2
i has been calculated using equations (4) and (6). The Dirac delta functions

are obtained by replacing theUl in terms of the variablesVzz, η, α, β, and γ . The
resulting expressions depend explicitly on the elements of the matrixH̃ and will thus
differ from matrix to matrix. Some general features may nevertheless be extracted from
equation (37). To obtain the distributionfe(Vzz), one must integrate over the remaining
variables(η, α, β, γ ). In the integration process, the delta factors yield a factor of|Vzz|n−5

(becauseδ(ax) = δ(x)/|a|). Thus the distributionfe(Vzz) varies as|Vzz|n−1 for small
Vzz. The bivariate distributionf (Vzz, η), and consequentlyfe(Vzz), which depends on the
matrix H̃ , are thus not universal for a givenn (except for the casen = 5). However this
dependence is weak, and to a good approximation, we can replace the actual distribution
by:

f ′e(Vzz) ∝ |Vzz|n−1 exp

[−V 2
zz(1+ 〈η2〉/3)

2σ 2

]
(38)

where for simplicityη2 has been replaced by〈η2〉 (〈η〉2 might be used as well). As discussed
in subsection 4.2.1, equation (38) is exact forn = 1 sincefa(η) = δ(η−η0). The distribution
given in equation (37) yields furthermore〈12〉 = 4ns2, with (equation (38))σ = 2s. The
following empirical distribution:

f (Vzz, η) ∝ |Vzz|n−1η(1− η2/9) exp

[−V 2
zz(1+ η2/3)

2σ 2

]
(39)

has been considered by Legeinet al [62] and adapted to EPR studies of local order in
glasses.

The distribution given in equation (39) coincides with the Cz(n) models forn = 5
only as it ignores the 5− n constraints onη and the angles. The associated distribution
of η is fa(η) ∝ η(1 − η2/9)/(1 + η2/3)n/2, and is approximately anr(η) distribution
(equation (15)) forn 6 4, with an increased mean〈η〉n ' 0.6098+ 0.0098(n − 5), in
contrast to theη distributions calculated numerically or derived for Cz(1) (subsection 4.2.1).
These numerical calculations for various values ofn, which also depend on the particular
matrix H̃n considered, are shown in figures 4 to 6 forn = 2 to 4 respectively. The previous
distribution (equation (39)) may however give results similar to those given by equation (37)
for techniques which are not very sensitive to details of theη distribution but mainly to
the average value〈η〉. As described below, these average values are generally greater than
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Figure 4. Simulation results for Cz(n) model forn = 2 for two choices ofH̃ . Shown are the
simulated distributions for (a), (b)η, (c)1 and (d)Vzz. In (a), 106 tensors forH̃1: 〈η〉 = 0.6356,
〈η2〉 = 0.4505; in (b), 106 tensors forH̃2: 〈η〉 = 0.5119,〈η2〉 = 0.3088. In (c) and (d), the two
choices forH̃ are shown as points (first) and lines (second).

0.5. The Gram–Schmidt method, described in appendix D, allows generation of random
orthogonal matricesH̃ (5× 5) which are representative of general matrices of that type.
The latter matrices depend on 10 parameters. We have also considered orthogonal matrices
Õ(α, β, γ ) (see appendix A) which depend only on three parameters and thus form an
ensemble of measure zero as compared to the previous general case. The latter simulations
are however not necessarily useless since the physically relevant matrices (if there are any)
are not known for the moment. We will therefore just describe some general features of the
simulation results. Once a matrix̃H is chosen, equation (33) and the Monte Carlo method
can be used to generate a large ensemble of EFG tensors from which the distributions of
interest may be derived numerically. As expected, thepn(1) distributions are obtained in
all cases. The resultsfa(η), pn(1) andfe(Vzz) for n = 2 to 4 are shown in figures 4 to 6.
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Figure 5. Simulation results for Cz(n) model forn = 3 for two choices ofH̃ . Shown are the
simulated distributions for (a), (b)η, (b)1 and (c)Vzz. In (a), 106 tensors forH̃1: 〈η〉 = 0.5593,
〈η2〉 = 0.3726; in (b), 106 tensors forH̃2: 〈η〉 = 0.5980,〈η2〉 = 0.4126. In (c) and (d), the two
choices forH̃ are shown as points (first) and lines (second).

The fe(Vzz) distributions are almost independent of the choice ofH̃ whatevern. They are
very well approximated by equation (38), where we have used:

〈η2〉 → 〈η2〉eff = 3

[ 〈12〉
〈V 2
zz〉
− 1

]
.

The exact distributionsfa(η) depend sensitively on the choice of̃H . For n = 2 and 3,
they show clear discontinuities. Figures 4 and 5 show two different results in (a) and (b)
respectively for different choices of̃H . The distributions for1 and forVzz, shown in the
same figures as (c) and (d), cannot be distinguished for the same two choices ofH̃ (given as
points and lines for the same choices shown in (a) and (b) respectively). WhateverH̃ , fa(η)
for n = 4 differs little from r(η), given in equation (15) and obtained forn = 5. The first



10738 G Le Caër and R A Brand

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

η

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
(η

)

(a)

0 1 2 3 4 5 6

∆

0

1

2

3

4

5

P
(∆

)

(b)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Vzz

0

1

2

3

4

P
(V

zz
)

(c)

n = 4

Figure 6. Simulation results for Cz(n) model forn = 4. Shown are the simulated distributions
for (a) η, (b) 1 and (c)Vzz. 〈η〉 = 0.6054,〈η2〉 = 0.4243.

and second moments〈η〉 and〈η2〉 are consequently very close to the corresponding values
for r(η). As a representative example, we have obtained〈η〉 .= 0.6054 and〈η2〉 .= 0.4243
which are very close to then = 5 values of 0.6098 and 0.4308 respectively. Equation (39)
is thus a very good approximation of the bivariate distributionf (Vzz, η), derived from
equation (37) forn = 4.

Despite larger differences, the general shape offa(η) for the casen = 3 still is similar
to that of r(η) for typical matricesH̃ : we obtain typically the moments〈η〉 .= 0.5593 and
〈η2〉 .= 0.3505. The distributionfa(η) for n = 2 shows three discontinuities of density with
infinite slopes for typical random matrices̃H . Other cases of distributions showing only
one discontinuity close to the origin were however obtained for particular matricesH̃ . To
conclude, equation (28) is exact by construction for Cz(n) models;f ′e(Vzz), equation (38),
may provide an excellent approximation offe(Vzz) whatevern. (In equation (38),〈η〉2
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may be used if〈η2〉 is unknown; if both are unknown,〈η2〉 .= 0.4243 found forr(η) is
still acceptable.) The detailed shapes offa(η) are more sensitive ton and to the choice
of H̃ . The averageη ranges however between≈0.5 and≈0.7 for typical matricesH̃ and
2 6 n 6 4. The distributionr(η) is a fair approximation forfa(η) for n = 3, 4. This
reinforces the role played by such a distribution in disordered systems, as emphasized in
section 3.

If the variances of theYi differ, it can be shown that the distribution given in
equation (37) is still valid, but〈12〉 is now given by 4

∑n
i=1 s

2
i and thus thatσ =

2(1/n
∑n

i=1 s
2
i )

1/2. In all cases, the distribution in equation (37) yields:

prob{Vzz > 0} = prob{Vzz < 0} = 0.5. (40)

The explicit dependence onα, β andγ in equation (37) confirms the anisotropic character
of the orientations of the principal axis frames which has been discussed above.

It is possible to extend the Cz(n) models as done in section 6 for the GIM to allow
relaxation of the condition given in equation (40):

Cz′(n) = (1− x)Ṽ0+ xCz(n) (41)

where Ṽ0 is a fixed EFG contribution. The covariance matrix for the latter isx23̃, still
proportional to3̃. The resulting QS distributions have been discussed in [7, 9]. If in
the future, the Cz(n) models receive experimental confirmation, extensions as given in
equation (41) could also be worth being further investigated.

4.3. Coey model

A model given by Coey [30] predicts the same QS distribution as the Czjzek model,
equation (28) withn = 2. Before discussing that particular model, we will first show
that the observation of a given QS distributionPq(1) does not allow conclusions on the
validity of a particular set of assumptions about the EFG tensor used to derivePq(1). The
role of the number of degrees of freedomn will be discussed in the next section. A given QS
distributionPq(1) associated with a statistically anisotropic tensor distributionP(U ) (for
instance the ‘degenerate Gaussian models’ [29]) can be obtained from an infinite number of
distributions of EFG tensors derived fromP(U ) by the following method. Let us consider
a particular EFG tensorU (whereU0 6 U 6 U0+dU ). If the frame of reference is rotated
(Euler anglesα, β, γ ), the elementsU ′k of the ‘new’ tensor are related to the elementsUk of
the ‘old’ one by linear relations, the coefficients of which depend on (α, β, γ ) and form an
orthogonal (5× 5) matrixO(α, β, γ ) (appendix A). We now select arbitrarily a probability
distributionR(α, β, γ ) which gives the weight of the random rotations performed onU .
A set of ‘new’ tensorsU ′ whose probability distribution depends onR(α, β, γ ) is thus
associated withU . The modulus of anyU ′ (and thus QS) remains unchanged and equal
to the modulus ofU becauseO(α, β, γ ) is orthogonal. If this operation is performed
identically, that is with the sameR(α, β, γ ), on all elements of the starting ensemble (in
which prob(U0 6 U 6 U0 + dU) = prob(U0) dU), a new probability distribution of EFG
tensorsP ′(U ) is derived which is a mixture of distributions. The QS distribution associated
with P ′(U ) is still Pq(1). Furthermore the joint distributionsf (Vzz, η) associated with
P ′(U ) or with P(U ) are identical. The arbitrariness of the tensor distribution reflects that
of the choice of the probability distributionR(α, β, γ ). It is therefore not surprising to
observe that models derived from different assumptions on the EFG tensor may yield the
same QS distribution.

Coey [30] has considered the plane defined byVxx + Vyy + Vzz = 0 containing the
eigenvaluesVxx , Vyy and Vzz of the EFG tensor introduced previously and has assumed
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that the probability density in that plane only depends on the distancer from the origin,
and is normally distributed (see also section 2). This leads to a QS distributionP2(1)

(equation (28),n = 2). As no assumption has been explicitly made about the distribution
of the elements of the EFG tensor, this model may or may not be consistent with rotational
invariance. The EFG tensor distribution will in any case differ from the one of Czjzek’s
extension forn = 2 if statistical isotropy is assumed (section 4.2). As discussed above,
the rotationally invariant EFG tensor distribution can be derived from the Czjzek tensor
distribution (n = 2) from some distributions of rotations (α, β, γ ). The main, as yet
unresolved problem raised by the latter model is to determine what kind of structure can
give rise toU distributions which are not normally distributed, but which are consistent
with the rotational invariance, and withn = 2 in equation (28).

4.4. Structural and statistical degrees of freedom

Two different types of degree of freedom have been dealt with and often confused in the
literature:

(1) First there are the ‘structural’ degrees of freedom which are associated with the
independent random variables which must be considered to define the arrangement of atoms
around the probe atoms apart from an ‘irrelevant’ rigid body rotation defined by the three
Euler angles(α, β, γ ) [1, 29]. An example is given by Czjzek for amorphous FeF3 [29] as
the number of random distortions of the(F−)6 octahedra around Fe3+ ions.

(2) The term degrees of freedom, which was introduced in statistics by Fisher by analogy
with dynamical systems, has different senses [79]. For the problem of the EFG in disordered
systems, the latter degrees of freedom, in numbern, were first considered in connection
with QS distributions of theχ type [1, 29] as is usual in statistics [79]. In this case,n is the
number of independent Gaussian variables to which the components of the random vectorU
are linearly related. This is the rank of the covariance matrix3̃ which is at most equal to 5.
It is the basic importance of linear transformations which makes the definition ofn efficient
and practical for normal variables. As in statistics [79], we may extend the definition ofn to
be here the number of independent random variables on which the experimentally available
QS distribution is based. That definition is not obviously useful and convenient in the case
where the random vectorU has a general probability distribution as the determination ofn

is far from being straightforward when the distribution ofU is not multivariate normal. For
rotationally invariant systems, the rank of the covariance matrix is always 5 (equation (12)).
The fiveUk are indeed Gaussian random variables only if they are independent as proved
in appendix B (see also [47, 51] as well as [52], p 52). Consequently there is noa priori
general transformation of non-GaussianUk which would allow us to express them in terms
of n independent variablesWk which could be used to obtain a possible fit of the QS
distribution, thus yieldingn.

The next section describes the probability distribution of the EFG created at the centre
of a sphere by a random repartition ofm point charges on the surface of the sphere. In
particular, this simplest example of a ‘shell model’ sheds light on the problem of the degrees
of freedom and tries to answer the question of whether there is a one-to-one correspondence
between the numbers of statistical and of structural degrees of freedom.
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5. EFG tensor distribution for a random distribution of m point charges on the
surface of a sphere

Assume that we have defined some method to placem identical point charges at points
given from a random distribution on the surface of a sphere. We now want to derive the
EFG tensor distribution and the QS distribution at the sphere centre. This problem, which
can be solved by computer simulations, has the advantage of allowing us to check that the
various conditions and conclusions discussed in sections 3 and 4 are indeed verified. The
EFG distributions resulting from such repartitions of points have been calculated by Czjzek
et al [1] for m = 2, 3. Czjzek [29] has moreover used the casem = 3 as illustrating the
validity of his extended models (section 4.2) forn = 3 (equation (28)) since in this case,
f (Vzz, η) is proportional toV 2

zz for small Vzz (figure 7(b) shows a similar behaviour for
P(1)). We will not reproduce these calculations here (see appendix of [1]). We do want to
look at the distributionsP(Ui) of the components of the random five-dimensional vectorU
(equation (5)) and to discuss the number of degrees of freedom. We want to show that the
observation of a quadraticVzz variation at the origin form = 3 chargesdoes not implythat
it corresponds to the extended model Cz(3) with n = 3 degrees of freedom (section 4.2).
For m charges (described by the polar anglesθi , φi , i = 1, . . . , m) the components of the
EFG tensor can be calculated from the expressions in equation (5) withrn = 1 andqn = 1
[1]. TheUi (equation (5)) have ranges of:

−m
2
6 U1 6 m

−m
√

3

2
6 Ui 6

m
√

3

2
i = 2, . . . ,5.

(42)

The joint probability forθi to be found in the range of2i and2i +d2i andφi to be found
in the range of8i and8i + d8i is given by:

prob(2i 6 θi 6 2i + d2i,8i 6 φi 6 8i + d8i) = 1

4π
sin(2i) d2i d8i.

By introducing the function of2i :

Zi = 1
2(3 cos2(2i)− 1)

the functionU1 may be rewritten as:

U1 =
m∑
i=1

Zi (43)

where each−1/26 Zi 6 1. The variableZi is distributed according to:

P(Zi) = 1√
3(1+ 2Zi)

.

From this it can be shown that the following average values hold:

〈Zi〉 = 0

〈Z2
i 〉 = 1

5.

As theZi are independent, we have:

〈U1〉 = 0

〈U2
1 〉 =

m

5
.

(44)
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Figure 7. (a) P(1) d1 calculated form = 2, 3 number of point charges, as well as the Czjzek
distribution forn = 3. (b) P(1) d1 versus12 to show that both this form = 3 and the GIM
with n = 3 varies indeed as12 for small1 although they are not equivalent.

The problem is rotationally invariant. Consider an infinite ensemble of groups ofm point
charges on the sphere: the distribution of the EFG tensor will not change if we rotate the
frame of reference. From equations (10) and (44), we obtain〈12〉 = 4m. Furthermore it is
straightforward to show that:

〈U3
1 〉 =

2m

35
(45)

〈U3
i 〉 = 0 i = 2, . . . ,5 (46)

〈U4
i 〉 =

3m(7m− 2)

175
i = 1, . . . ,5 (47)

〈U6
1 〉 =

53m

1001
+ 15m(m− 1)

49
+ 3m(m− 1)(m− 2)

25
. (48)
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More generally the coefficient ofmd (d is an integer) inU2d
1 comes from terms of the type:

〈Z2
k1
Z2
k2
· · ·Z2

kd
〉

with k1 6= k2 6= · · · 6= kd . This yields for the average even powers:

〈U2d
1 〉 = md

(2d)!

10dd!
+md−1 . . . . (49)

Similarly for the odd powers,〈U2d+1
1 〉 is also a polynomial inmd because the largest power

of m comes from averages like:

〈Z2
k1
Z2
k2
· · ·Z2

kd−1
Z3
kd
〉

(note the difference from the case of the even powers) withk1 6= k2 6= · · · 6= kd . This
is because the independence of theZk and the zero averages〈Zk〉 = 0 prevent one from
selecting factorsZskp with s < 2 in the latter averages. The ratios〈U2d+1

1 〉/〈U2
1 〉d+1/2 go to

zero whenm→∞ since they vary as 1/
√
m. It can be shown from equation (49) that:

lim
m→∞

〈U2d
1 〉

〈U2
1 〉d
= (2d)!

d!2d
.

The ratios on the right-hand side are the moments of the normal distributionN(0, 1) centred
on zero and of unit standard deviation. That proves that the distribution ofU1 tends
to a normal distribution whenm → ∞, a result which may also be derived from the
central limit theorem [50, 63] applied to equation (43). Similarly the central limit theorem
applied to the random vectorU , the sum ofm independent and identically distributed
random vectors, would establish that the distribution ofU tends to a multivariate Gaussian
distribution whenm→∞. This implies the validity of the GIM model for this rotationally
invariant distribution. The third moments given by relations (45) and (46) are the first which
emphasize theasymmetriccharacter of the distribution ofU1 in contrast to the distributions
of Uk for k 6= 1 as stressed in section 3.

Although the distributions of theUk are not Gaussian in a strict sense whenm is finite
(equations (42), (43), (45)–(48)), they are well approximated by Gaussian distributions
for large m. As a consequence of statistical isotropy, theUk are uncorrelated but not
mutually independent even if deviations from independence become smaller and smaller as
m increases. It is only in the limitm→∞ that theUk become truly mutually independent.
Numerical simulations confirm indeed that in all cases, the covariance matrix is as expected
(equation (12)):

3̃ = m

5
I5. (50)

To discuss the problem of the degrees of freedom and the QS distributions, let us consider
first the case of one charge:m = 1. There are two parameters, for example the polar angles
(θ , φ). Therefore the EFG tensor cannot have more than two degrees of freedom. Since it
is impossible with only two parameters to determine the orientation of the EFG principal
axes (three parameters such as the Euler angles (α, β, γ ) are needed), we can at most
determine one axis. This is sufficient only in the caseη = 0. As the system is rotationally
invariant and as two parameters are needed to define the principalz axis, the value ofVzz
(in the principal axis system) must be fixed. A direct calculation with one single charge
in equation (5) immediately shows that the conditions required by rotational invariance are
satisfied.

For the case of two charges,m = 2, four independent random variables are available,
that is 4− 3= 1 structural degree of freedom [1, 29]. Three parameters are needed for the



10744 G Le Caër and R A Brand

EFG principal axis system, and thusVzz andη must both depend on only one parameter,
as in fact was shown by Czjzeket al [1]. For m = 2, the distribution ofU1 is calculated
to be:

P(U1) =


0 U1 < −1, orU1 > 2
π

6
−16 U1 6 1/2

1

3
sin−1

(
2− U1

1+ U1

)
1/26 U1 6 2

(51)

in perfect agreement with figure 8. For−1 6 U1 6 1/2, an average value ofP(U1) ∼=
0.5235(2) is found from a computer simulation with 8× 106 sets of two charges, while
the exact value isπ/6∼= 0.523 598. . . . Figure 8 shows the distributionsP(Ui) for m = 1
to 4. As expected,P(U1) is dissymmetric but less and less so asm increases, while the
P(Ui) for i > 1 are identical, symmetric and already very well approximated by a normal
distribution (figure 8)PG(Ui) = exp(−U2

i /(0.4m))/
√
(0.4mπ) (using 〈U2

i 〉 = m/5 from
equations (10) and (44)).

For m = 3, P(U1) is strongly dissymmetric with an infinite slope atU1 = −1.5 and a
discontinuous and non-zero slope atU1 = 0. The fiveP(Ui) disagree with the assumption
that theUi would be linearly related to only three Gaussian random variables as would
be required by the degenerate Gaussian model Cz(3). The latter assumption is further not
valid if it is restricted to the vicinity ofU = 0 [29] as a linear combination of Gaussian
random variables cannot account for the slope discontinuity ofU1. The behaviour ofU1

is the fundamental reason whyf (Vzz, η) varies asV 2
zz for small values ofVzz [29]. The

associated QS distribution strongly differs fromP3(1), given by equation (28) forn = 3, as
is shown by a direct comparison of the simulated QS distribution (using〈12〉 = 4m = 12)
with P3(1) for the same value of〈12〉 = nσ 2 = 3σ 2, whereσ 2 = 4m/n = 4 (figure 7).
The definition and the direct determination of a numbern of degrees of freedom from the
QS distribution remain unsolved problems form = 3.

We observe that there is a very fast convergence ofP(Ui) for i = 2, . . . ,5 to the normal
distribution with increasingm, but a much slower one forP(U1). In any case,U1 will also
become normally distributed in the limitm→∞ as discussed previously. In fact, all five
P(Ui) are already very well approximated by normal distributions form = 4 charges.

The ‘structural’ degrees of freedom (section 4.4), in numberns , are associated with
the physically relevant independent random variables [1, 29] which must be considered to
define the arrangement of atoms. In the degenerate Gaussian model, Czjzek [29] considered
ns 6 4. Howeverns is already 5 form = 4. In any case, the question is: is it possible to
derivens solely from the QS distribution? Equivalently, can we determinem from P(1)?
To simulate the situation which experimentalists are faced with in Mössbauer spectroscopy,
we must define a way to determine the numbersn andm given only the QS distribution
and ignoring in general the various contributions to the observed EFG. As it is not possible
a priori to guess a functional form and even to definen for the latter distribution, we have
to try to fit such distributions with model distributions such asPn(1) (equation (28)), as
done almost systematically in the literature. No fit of reasonable quality can be obtained
with Pn(1) for m 6 3 while n would be considered to be five wheneverm > 5. For
m = 4, the distribution deviates but not drastically fromP5(1). There is no simple way to
define and thus to determinen and consequentlym andns from general QS distributions
and furthermore no one-to-one correspondence betweenn andm when a meaning can be
given to n. To conclude, the consequences of statistical invariance by rotation are easily
verified by computer simulations which further show that statistical degrees of freedom of
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Figure 8. P(Ui) dUi calculated for (a)m = 1, (b)m = 2, (c)m = 3, (d)m = 4 number of point
charges, and differenti as noted (dUi = 0.05) as compared to a GaussianPG(U) (squares).

the QS distribution, when they can be defined, must not be confused with the number of
degrees of freedom associated with the structure.

6. A simple extension of the GIM model

In 1985, we introduced [9] a different class of models which seems worth being further
investigated. The following tensor, written here in a slightly different way than in [9], was
considered:

Ṽ (x) = (1− x)Ṽ0+ xṼGI 06 x 6 1. (52)

The Ṽ0 mimics the EFG contribution of a well defined neighbourhood of a given atomic
species and is characterized by the parametersVzz(0) andη(0). In the following, we will
set η(0) = 0 so that the corresponding QS is1(0) = |Vzz|. The ṼGI (called Gaussian
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Figure 8. (Continued)

isotropic; see section 4) is related to disorder of more remote atomic shells and to random
contributions to the total EFG. The QS1(0) for x = 0 is deduced from (see equation 6):

12(0) = 4
∑
k

U2
k (0)

where theUk(0) are taken here as the components of the vectorU (0) associated with
the diagonal tensor̃V0. The parameterx allows one to change the influence of the latter
part. It is necessary to rotatẽV0 in all directions using correct weights in order to obtain
a rotationally invariant tensor̃V (x). If η(0) = 0, the distribution of the EFG tensor̃V (R)0

obtained fromṼ0 by uniform random rotations is the same as the distribution of the EFG
tensor of section 5 for a single charge but with a chargeU1(0) instead of 1. (m = 1; see
figure 8 for the shapes of the marginal distributions of theU

(R)
k (0).) The latter result can

be easily derived from equation (A1) in appendix A with allUk(0) equal to zero except
U1 = U(0): the newU(R)

k (0) are indeed given by equation (4) withβ andγ replacingθ
andφ and withq = U1(0). The fact thatm = 1 ensures that the QS distribution associated



Distribution of EFG in disordered solids 10747

with Ṽ (R)0 is given byδ(1−1(0)) as expected from the relation:

4
∑
k

(U
(R)
k (0))2 = 12(0)

which is valid whatever the rotationR(α, β, γ ). However, as solely the QS distribution
associated with equation (52) was derived [58], the final result does not depend on whether
Ṽ0 is rotated or not (section 4.3). The speed at which theṼGI contribution dominates
the Ṽ0 one was also investigated by varyingx. An identical model was later numerically
investigated [81]. This model is intended to describe an amorphous solid possessing a
strong short-range order. This is the case in some amorphous solids, for instance in those
which are formed in a reversible manner from single crystals under the influence of pressure
[82]. An example is for instance berlinite-type FePO4 [83]. Anisotropic effects may further
be introduced ifṼ0 is now considered as a tensor which is not rotated uniformly in all
directions (section 4.2). The latter case may model for instance single crystals in which
disorder is due to alloying elements or to defects, etc.

To calculate the QS distribution or the bivariate distributionf (Vzz, η) from computer
simulations and numerical calculations as discussed below, the most convenient frame of
reference to express the initial ensemble of EFG tensors is the principal axis system of the
tensor Ṽ (0). As shown by equation (52), theUk are still normal and independent with
means given by:

〈U1(x)〉 = (1− x)U1(0)

〈Uk(x)〉 = 0 k = 2, 3, 4

〈U5(x)〉 = (1− x)U5(0).

(53)

The variances of theUk are solely due to the random part ofṼ (x), that is:

〈(Uk − 〈Uk〉)2〉 = 1
20x

2〈12
g〉 = 1

4x
2σ 2 k = 1, . . . ,5 (54)

whereσ is the sole parameter which enters theχ distribution equation (28), and〈12
g〉 = 5σ 2

is the second moment of the latter distribution forx = 1. We notice that the covariance
matrix of U is still the one required for statistical invariancẽ3 = (1/20)x2〈12

g〉Ĩ5

(equation (12)) but the latter invariance is not fulfilled as〈Ui〉 6= 0 (i = 1, . . . ,5).
Nevertheless, the ‘relevant’ physics is contained here in the ensemble of configurations
described byṼ (x) (equation (52)) in the frame of reference of the fixed part ofṼ0. It
is the rotational invariance and the ‘averaged’ nature, due to the central limit theorem,
of configurations of atoms leading to thẽVGI term which justify the latter conclusions.
The distributionf (Vzz, η) derived here for an anisotropic solid holds also for a truly
isotropic solid in the sense discussed in subsection 4.2.1 on the degenerate Gaussian models.
There, atomic configurations are redistributed so as to produce only short-range structural
correlations at a scale� L and GIM configurations for more remote shells. This solid
would differ from an isotropic solid obtained from an anisotropic one containing structural
correlations at a scale ofL by averaging over all correctly weighted rotations. Correlations
at a scale� L must indeed be considered for solids showing a significant contribution of
the ṼGI term in equation (52). Only the anisotropic system is considered below to derive
f (Vzz, η). Although the distribution ofU is multivariate normal (appendix C), such a useful
characteristic ofP(U ) would not be preserved for an isotropic solid as a consequence of the
results shown in appendix B. From the multivariate normal distribution ofU , we therefore
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obtain (equations (3) and (5)):

T 2 = 12

x2σ 2
= 1

x2σ 2

5∑
k=1

W 2
k

Wk = 2Uk k = 1, . . . ,5.

(55)

T 2 is distributed according to a non-centralχ2 distribution [68] with five degrees of freedom,
that is:

q5(1) =
√

2

π

[
xσ1

ω3

]
exp

(
− ω

2+12

2(xσ )2

)[
ω1

(xσ)2
cosh

(
ω1

(xσ)2

)
− sinh

(
ω1

(xσ)2

)]
. (56)

ω = (1− x)1(0) is the noncentrality parameter whose square has been obtained from the
sum of the squares of the means of theWk. It is easy to check that equation (28) with
n = 5 is recovered whenx → 1 since:

lim
y→0

(y cosh(y)− sinh(y)) ≈ 1
3y

3.

The average QS is calculated from:

〈1〉 = (
√

2/π)xσ(1+ Z−2) exp(−Z2/2)+ (ω + 2xσ/Z − 4ω/Z4) erf(Z/
√

2)

Z = ω/(xσ).
(57)

The error function:

erf(x) ≡ 2√
π

∫ x

0
exp(−t2) dt

can be calculated with high precision from [84]:

erf(x) ∼=


2

π

12∑
j=0

2

2j + 1
exp

(
− (2j + 1)2

36

)
sin

(
x(2j + 1)

3

)
|x| 6 4.7

sign(x) |x| > 4.7.

(58)

In the limit Z→ 0, from equation (57), the average value of1 becomes:

〈1〉 = 8xσ

3

√
2

π

(
1 + Z

2

10
+ 13Z4

2240

)
. (59)

The variance of the QS distribution is calculated from the following:

σ 2
1 ≡ 〈12〉 − 〈1〉2 = 5x2σ 2+ (1− x)212(0)− 〈1〉2. (60)

An equation similar to equation (55) could be used to deduce QS distributions of the non-
centralχ type withn < 5 as proposed for instance in [7, 8]. Such distributions raise however
problems related to anisotropic effects or to their structural significance analogous to those
raised by the ‘degenerate Gaussian models’ and the Coey model. It is also possible to express
the bivariate distributionf (Vzz, η) (see appendix C). With the simplifying assumption that
η(0) = 0 and after dropping a constant factor, the bivariate distribution becomes:

f (Vzz, η) ∝
V 4
zzη

x5σ 5

(
1− η

2

9

)
exp

(
− ω

2+ V 2
zz(1+ η2/3)

2x2σ 2

)
×
∫ 1

0
I0(z) exp(�(3t2− 1)) dt (61)



Distribution of EFG in disordered solids 10749

whereI0(z) is a modified Bessel function,ω = (1− x)|Vzz(0)| andz and� are given by:

z = η|�|(1− t2)
� = (1− x)VzzVzz(0)

2x2σ 2
.

It is the exponential factor in the integral of equation (61) which is responsible for the
asymmetry of thefe(Vzz) distribution.

In order to present contour plots of the distribution given by equation (61), we choose a
different polar representation (r, φ) than that used by Czjzek [55]. He used (in our notation:
see equation (6))S2 = (3/2)r2 = (3/2)V 2

zz(1+ η2/3) andD3 = r3 sin(3φ). This projects
the variation ofVzz and η into the range±π/6. (In addition, for both representations,η
is only a function ofφ, but Vzz is a function of bothr andφ.) We choose the following
transformation, where the full parameter space of (Vzz, η) is the upper half-plane (as here
eQ/2 = 1):

r = 1 = |Vzz|
√

1+ η2/3

cos(φ) = (1− η2) sign(Vzz)

(1+ η2/3)3/2
0< φ < π.

Figure 9. Contour plot of the Czjzek distribution function, equations (13) and (27), in the polar
representation of section 6, table 2. The plot has been reflected into the lower half plane as
well. η = 0 is the horizontal axis. The dashed lines are circles of constant1 (in steps of 1).
Radial lines are lines of constantη.

First we show in figure 9 the distribution given by Czjzek, and called here the Gaussian
isotropic model, equation (13), using this different polar transformation of coordinates, and
already presented in figure 2. An interesting property of this new plot is thatVzz > 0 is in
the right, andVzz < 0 in the left upper half-plane. Thex-axis is the line ofη = 0, while the
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Figure 10. Contour plot of equation (61) in the polar representation of section 6, table 2. For
these plots,Vzz(0)/σ = 1 andη(0) = 0 has been chosen, andVzz normalized toσ . The mixing
parameterx has been chosen from (a) 0.1 to (f) 0.8.x = 0 (not shown) corresponds to a delta
function atVzz/σ = 1, andη = 0 which is given by the arrow in (a).

Table 2. Transformation used for figures 9 and 10.

Variable 0< φ 6 π/2 π/2< φ 6 π

Vzz(r, φ) r cos(φ/3) −r cos((π − φ)/3)
η(r, φ)

√
3 tan(φ/3)

√
3 tan((π − φ)/3)

positivey-axis η = 1. Lines of constantη are radial, and lines of constant1 are circles.
These are shown as dashed lines on the figure, whereVzz has again been normalized toσ
(σ 2 = 〈12〉/5 since the number of degrees of freedomn = 5). The transformation from
(r, φ) to (Vzz, η) is shown in table 2. A line at constantφ through the origin yields a cut at
constantη for a given sign ofVzz. If the function in the upper half-plane is reflected into
the lower half-plane, a line of constantφ determines the conditional distributionf (Vzz|η).

We now show in figure 10 contour plots of the distribution given by function (60) for
several values of the mixing parameterx for Vzz(0) = 1. In the case ofx = 0, f (Vzz, η) is a
delta function. This broadens quickly for increasingx, mainly in the direction of increasing
η. The negativeVzz half plane is reached by crossing theη = 1 axis.

The model given by equation (52) was also investigated by computer simulation as a
function of x to study the influence of disorder on the distributionsfa(η), fe(Vzz) and of
q5(1). Random EFG tensors were generated with the help of a pseudo-random number
generator and ensemble averages were performed to obtain the previous distributions.
Numerical calculations offe(Vzz) and of fa(η) were also performed with the help of
equation (61). Figures 11, 12 and 16 prove that the simulation results for〈1〉 as well
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Figure 11. Average〈1〉 (full circles) and standard deviationσ1 (full triangles) as a function of
x for 1(0) = 1, η(0) = 0 andσ = 1/

√
5 from equations (57) and (60).
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Figure 12. Percentage area ofVzz,+ as a function ofx for 1(0) = 1, η(0) = 0 (solid line:
theoretical values calculated from equation (61)).

as σ1, p+ and fa(η) are in excellent agreement with the theoretical values as calculated
from equations (57) and (60). We have taken1(0) = 1, σ = 1/

√
5 andη(0) = 0. From the

relative area of the negative part of thefe(Vzz) distribution, we conclude that three domains
have to be distinguished (see figure 12).

• There is a ‘crystalline’ domain forx . 0.3 where the behaviour is dominated by the
‘ordered’ partṼ0.
• There is a mixed domain for the range∼0.3 < x . 0.7, with intermediate

characteristics and a fast decrease ofp+ = prob(Vzz > 0).
• There is a ‘random’ domain forx & 0.7 which is dominated by the GIM term with

distributions almost identical with those of the GIM.
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Figure 14. fe(Vzz) as a function ofVzz for 1(0) = 1, η(0) = 0 andx = 0.5.

The ‘crystalline’ domain tends to shrink and the random domain tends to extend when
η(0) is larger than zero. Different conclusions are apparently drawn from thex-dependence
of the average〈η〉 and of ση (see figure 13). Both increase from 0 to values close to
the GIM values (0.61 and 0.24 respectively; see section 3) whenx increases from 0 to
0.5 and remain almost constant for larger values ofx. Such results can be understood
from the discussion of the ‘universality’ of the GIM distributionr(η) given in section 3,
equation (15). Figure 14 shows the asymmetric distributionfe(Vzz) (p+ = 0.687) for
1(0) = 1, σ = 1/

√
5, η(0) = 0 andx = 0.5. Figure 15 compares the positive parts of

the distributionsf +e (Vzz) (with Vzz > 0) with ‘normalized’ functions calculated for various
values ofx from the negative partsf −e (Vzz) (with Vzz < 0) according to:

g−e (Vzz) =
p+

p−
f −e (−Vzz) Vzz > 0 (62)
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Figure 15. fe(Vzz,+) and(p+/p−)fe(Vzz−) as a function of|Vzz| for 1(0) = 1, η(0) = 0 for:
(a) x = 0.4; (b) x = 0.5; (c) x = 0.6. In (c), the curve for the GIM model, figure 1(c), is shown
for comparison.
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Figure 16. fa(η) as a function ofη for 1(0) = 1, η(0) = 0 for x between 0.2 and 1.0.

with p− = 1− p+. The marginalVzz distributionsf +e (Vzz) andg−e (Vzz) have very similar
shapes forx larger than∼0.5. For increasingx, the positive and negativeVzz parts converge,
and forx = 0.6 (figure 15(c)) this is already very close to the marginal distributionfe(Vzz),
figure 1(c), which is shown in figure 15(c) as a solid line. In order to compare these
two figures, an effectiveσeff has been used to scaleVzz/σ , whereσ 2

eff = 〈12〉/5 and
〈12〉 = 5x2σ 2 + (1− x)212(0) (see equation (60)). Withσ 2 = 1/5 and1(0) = 1, this
yieldsσ 2

eff = (x2+(1−x)2)/5. As expected from the discussion of section 3, the distribution
of fa(η) deviates little from the GIM distributionr(η) for x & 0.5 (see equation (15) and
figure 16). The conclusions drawn from thefa(η) distributions do not contradict therefore
those drawn fromfe(Vzz) which are the relevant distributions which must be used to account
properly for the overall behaviour of the model given in equation (52) as a function ofx.

7. Applications to Mössbauer spectroscopy

7.1. Some remarks

(a) Turek [88] has recently used a superoperator formalism to calculate Mössbauer
profiles in the presence of the Czjzek distribution forn = 5 [1] and a hyperfine magnetic
field.

(b) With 57Fe Mössbauer spectroscopy, it is in fact difficult to establish experimentally
detailed properties of the investigated EFG distributions. Some distributions of asymmetry
parameters have been reported, although57Fe Mössbauer spectra are insensitive to the
distribution ofη and mainly sensitive to its average value. We demonstrate this with a series
of simulations. Figure 17(a) and (b) shows spectra simulated with the full Hamiltonian for
(a) Vzz = 0.4 mm s−1 and for (b)Vzz = 1 mm s−1 in a field B = 5 T perpendicular to
the γ -rays. Many spectra have been calculated for various different model distributions of
η. We have in particular tried the following (cases (1), (2) and (3) are given in 17(c) as
histograms):

(1) A δ-function atη = 0.5: ση = 0.
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b

Figure 17. Simulated57Fe Mössbauer spectra withBhf = 5 T, perpendicular to theγ -ray beam
for two different values ofVzz: (a) 0.4 mm s−1; (b) 1.0 mm s−1. The η distributions used in
the above are shown in (c) (see text, section 7.1).

(2) A uniform discrete distribution between 0 and 1 (calculated withη = k/10,
k = 0, . . . ,10): ση = 0.3114.

(3) The sum of a spectrum withη = 0 and one withη = 1: ση = 0.5.
(4) Not shown here are: a uniform distribution between 0.5− η0 and 0.5+ η0 with
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0< η0 < 0.5 and further a triangular distribution.

All distributions had the same mean〈η〉 = 0.5 but different widths (standard deviations)
ση, which were varied from 0 to 0.5 (obtained for case (3) above). Only spectra showing
the largest differences are shown in figure 17. Figures 17(a) and (b) show at the top the
spectra for cases (1) and (2) including the difference (enlarged for clarity). Shown in the
middle are the spectra for cases (1) and (3) including again the differences. At the bottom,
the two spectra forη = 0 andη = 1 are shown.

Figure 17 proves that spectra are almost identical whatever the value ofση. In the
presence of further distributions of IS’s and ofVzz, it seems hopeless to extract more that
the average〈η〉 from an 57Fe Mössbauer experiment. (This is of course not the case for
certain other M̈ossbauer isotopes, or for NMR or PAC experiments.)

7.2. Ambiguity problem: QS distributions in classical57Fe and119Sn Mössbauer
spectroscopy

In order to reliably compare experimental and theoretical results we must consider the
sources of possible distortions to distributions obtained from classical57Fe and 119Sn
Mössbauer spectra. Two main problems may be distinguished. The first is of extrinsic
nature and is due to the fact that the extraction of distributions from Mössbauer (or
other) spectra belongs to the class of ill-posed ‘inverse’ problems. Small changes in the
spectra may lead to large changes in the calculated distributions. Regularization methods
are consequently required, and various methods are now available, to extract trustworthy
pieces of information from experimental results. However, in addition, hyperfine parameter
distributions in disordered or complex crystalline solids area priori multivariate.

Some well known ‘non-uniqueness’ problems have been qualitatively discussed by
Rancourt [92]. They are for example the determination ofVzz and η from a knowledge
only of 1, or that ofη and the direction of the hyperfine fieldBhf (θ, φ) in the principal
axis system of the EFG tensor from a knowledge only ofε, the quadrupole lineshift in first-
order perturbation theory. The ambiguity problem which we quantitatively discuss here
cannot be reduced by a further change of variables. For these two examples, the physically
meaningful and unambiguous parameters are1 and ε. As mentioned by Rancourt, there
exist different levels of ambiguity. Only the deepest irreducible level is discussed here. It is
related to the intrinsic one-dimensional character of a Mössbauer spectrum in which only the
photon energy (Doppler velocity) is varied. This partial one-dimensional information, from
which one is trying to reconstruct a multi-dimensional distribution, produces an ambiguity
in the derived distribution. As will be discussed below, identical Mössbauer spectra are
obtained from different distributions. In systems which show a distribution of ISδ and
of the quadrupole splitting1, the distribution which we must seek to obtain from the
data is actuallyf (δ,1). (The quantityf (δ,1)dδ d1 is the relative area associated with
δ 6 IS6 δ+dδ and1 6 QS6 1+d1 but not necessarily with the fraction of iron atoms
with IS= δ and QS= 1 since the Lamb–M̈ossbauer factors are nota priori the same for
all iron atoms.)

In the case of M̈ossbauer spectroscopy on isotopes with a1
2 ↔ 3

2 transition, such as
57Fe and119Sn, severe ambiguity problems occur in the determination off (δ,1), at least
from spectra taken in zero external magnetic field. This means that different distributions,
say f (δ,1) and g(δ,1), produce identical spectra if they fulfil an as yet unreported
relation established below. Only some of theg(δ,1) distributions can be excluded as
being physically implausible. Moreover, the ambiguity problem yields irreducible solutions
g(δ,1), that is solutions which cannot be related tof (δ,1) by simple operations (for
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instance symmetrization, etc). An example can be presented which shows that this is
indeed the case. For this purpose, we consider a distributionf (δ,1) = δ(δ − δ0)p(1),
which yields a spectrum symmetric with respect to the fixed ISδ0. It can be shown that
the very same spectrum results from a distributiong(δ,1) = q(δ)δ(1) of the IS with zero
quadrupole splitting. The relation betweenq andp is:

q(δ) =
{
p(2(δ0− δ)) δ 6 δ0

p(2(δ − δ0)) δ > δ0.
(63)

More generally, any non-magnetic spectrum may be considered as resulting from a
distribution of IS’s with zero quadrupole splitting:g(δ,1) = q(δ)δ(1) whereq(δ) is no
longer given by equation (63). It is immediately possible to object that the distributionq(δ)

has no physical meaning in most cases. However, the latter distribution will be seen below
to be of practical interest. The calculation ofq(δ) may equivalently be looked at as a way
to remove the Lorentzian broadening from the spectrum. In any case, the ‘mathematical’
ambiguity associated withq(δ) raises the problem of a possible physical ambiguity. The
following question is thus raised: What conditions must two different distributions fulfil to
give rise to identical M̈ossbauer spectra? That is, ifCexp(v) represents the experimental
spectrum at Doppler velocityv, C∞ the background non-resonant counting rate andA a
constant:

Cexp(v)/C∞ ≡ 1− Acexp(v) = 1− Acf (v) = 1− Acg(v). (64)

We will use the thin absorber approximation for simplicity. Then:

ch(v) = 1

2

∫ +∞
−∞

dδ
∫ +∞

0
d1h(δ,1)

[
1

1+ (4(v − δ +1/2)2/02)

+ 1

1+ (4(v − δ −1/2)2/02)

]
(65)

whereh = f, g. A similar relation may also be obtained when this approximation is not
valid by first using the method of For instance Dibar Ure and Flinn [94] for finite thickness
(blackness removal). The characteristic functionφ of the distributionh(δ,1) is defined as
[95]:

φh(t1, t2) ≡ 〈exp(it1δ + it21)〉h =
∫ +∞
−∞

dδ
∫ +∞

0
d1h(δ,1)exp(it1δ + it21). (66)

Averages with respect to a distributionh will be denoted hereafter as〈. . .〉h. The notation
〈. . .〉q (i.e. h = q) will denote averages taken over the pure IS distributionq(δ)δ(1)
discussed previously. We wish to establish conditions onf andg such that (equation (64)):

cexp(v) ≡ cf (v) ≡ cg(v). (67)

Let us take the Fourier transforms of the terms of equation (67) in order to introduce the
characteristic functions defined above. We note that Fourier transforms have been used in
the past to analyse M̈ossbauer spectra. For instance Dibar Ure and Flinn [94] have used
this for the removal of thickness effects. More recently, Vincze [96] has used the Fourier
transform method in order to extract the even part of the distribution of the dominant part
of the hyperfine interaction distribution from broadened Mössbauer spectra. Equation (67)
becomes: ∫ +∞

−∞
exp(itv)cf (v) dv =

∫ +∞
−∞

exp(itv)cg(v) dv. (68)
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Assuming that all the Lorentzian lines have the same full width at half-maximum (FWHM)
0 (equation (65)), we obtain (deleting common factors):∫ +∞
−∞

dδ
∫ +∞

0
d1f (δ,1)[exp(itδ + it1/2)+ exp(itδ − it1/2)]

=
∫ +∞
−∞

dδ
∫ +∞

0
d1g(δ,1)[exp(itδ + it1/2)+ exp(itδ − it1/2)]. (69)

In other words, the ‘ambiguity’ equation given by:

φf (t,+t/2)+ φf (t,−t/2) = φg(t,+t/2)+ φg(t,−t/2) = 2φq(t) (70)

is the sought-after relation between the characteristic functions off andg. The two terms
with index f or g in equation (70) are the characteristic functions of the random variables
δ+1/2 andδ−1/2, respectively. This ambiguity equation (equation (70)) emphasizes the
basic reason for the existence of such a problem in Mössbauer spectroscopy: one is trying
to reconstruct a two-dimensional characteristic function from the sum of two symmetric
one-dimensional cuts. If two distinct distributionsg1(δ,1) and g2(δ,1) are solutions of
equation (70), any linear combinationg(δ,1) = αg1(δ,1)+(1−α)g2(δ,1) with 06 α 6 1
is also a solution of it.

As a check of equation (70), we notice that the characteristic function of the distribution
q(δ) given by equation (63) is:

φq(t) = 〈exp(itδ)〉q = 1
2 exp(itδ0)[φp(+t/2)+ φp(−t/2)]. (71)

From f (δ,1) = δ(δ − δ0)p(1), we deriveφf (t1, t2) = exp(it1δ0)φp(t2), while g(δ,1) =
q(δ)δ(1) and φg(t1, t2) = φq(t1). Equation (70) thus yieldsφq(t) for these particular
distributions.

We assume that the moments of the distributionsh(δ,1) exist up to some ordern (with
n > 3). If we take the derivatives of all terms of equation (70),k times with respect tot
and sett = 0, we obtain (see equation (66)):

〈(δ +1/2)j + (δ −1/2)j 〉h = constant (72)

with j = 1, . . . , k (with k 6 n) whatever the distributionh which yieldsch(v) = cexp(v)
from equation (65). As surprising as it may look, equation (72) means that a distribution,
even devoid of physical meaning, which yields a spectrum identical with the experimental
one nevertheless must contain exact quantitative information about its shape. Equation (72)
yields:

〈δ〉h = 〈δ〉q = constant= δ0 (73)

σ 2
δ,h + 〈12/4〉h = σ 2

δ,q = constant′ (74)

〈(δ − δ0)
3〉h + 3

4{〈δ12〉h − δ0〈12〉h} = 〈(δ − δ0)
3〉q = constant′′ = m3

δ,q (75)

for j = 1, 2, 3 respectively. Forj = 2 and j = 3, the moments obtained for low-
order moments have been combined in equations (74) and (75). In equations (73)–(75),
σ 2
δs = 〈(δ − δ0)

2〉s (wheres = h or q). Equation (73) expresses the fact that the centre of
gravity of the experimental spectrum is the same for all distributions which fitcexp(v) using
Lorentzian lines with identical linewidths (FWHM) and according to the usual criterion of
quality of fit. It is clear that a similar relationship〈1〉h = constant cannot be expected
because〈1〉q by definition is equal to zero. Equations (73)–(75) suggest a convenient
method to obtain useful and practical relationships between fitted parameters. This is given
by the points below.
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(1) Consider that the experimental spectrumcexp(v) results from a pure IS distribution,
and extract the associated distributionq(δ). From a practical point of view, this is the
simplest fit ofcexp(v) with a distribution of hyperfine parameters. It provides a ‘thinned’
spectrum (removal of a Lorentzian linewidth of FWHM0) and some constants which may
be convenient for many purposes.

(2) Calculate the moments ofq(δ): 〈δ〉q , σδ,q andmδ,q as given by equations (73)–(75).

The last term in the bracket on the left-hand side of equation (75) is the numerator of
the correlation coefficientρh betweenδ and12. If a fit to cexp(v) is possible using a
distributiong(δ,1) with δ and1 distributed independently (that is,g(δ,1) = u(δ)v(1)),
then equation (75) reduces to〈(δ − δ0)

3〉g = 〈(δ − δ0)
3〉q . The model-independent

histogram methods [89, 90] frequently used to extract hyperfine parameter distributions from
experimental spectra are particularly convenient to deal with the ambiguity problem (some
recent reviews of this method are given in [91]).

The thinning effect is illustrated by the following example of a spectrum consisting of
n Lorentzian lines of FWHM0 at velocitiesvj (j = 1, . . . , n) with

∑n
j=1 aj = 1:

Cexp(v)/C∞ = 1− A
n∑
j−1

aj

1+ (4(v − vj )2/02)
.

The latter spectrum is equivalently calculated from equations (64) and (65) with:

h(δ,1) = q(δ)δ(1)

q(δ) =
n∑
j=1

aj δ(δ − vj ).

A ‘thinned’ spectrum is thus obtained from a fit of the experimental spectrum with a ‘pure’
IS distribution.

We note that equation (70) may immediately be extended to the case of trivariate
distributions of the typef (Bhf , δ, ε) andg(Bhf , δ, ε) whereBhf is the hyperfine magnetic
field, andε the first-order quadrupolar shift for12 ↔ 3

2 Mössbauer transitions (yielding a
sextuplet of lines). Within this approximation, the magnetic ambiguity equation is:

6∑
j=1

Ijφh(αj t, t, βj t) = φq(t) (76)

whereh = f, g, . . . , andIj is the relative intensity of linej in the elementary sextet (with∑6
j=1 Ij = 1; for instanceI1 = I6 = 3/12, I2 = I5 = 2/12, I3 = I4 = 1/12). All lines are

assumed to be Lorentzian with an FWHM of0. The right-hand side of equation (76) is
associated with the previous ‘isomer shift’ distribution. As mentioned previously, the latter
is equivalent to the removal of a Lorentzian linewidth of0. αjBhf describe the lineshifts
due to the nuclear Zeeman effect for lines of the sextet (j = 1, . . . ,6) andβj indexes
the sign of the quadrupole lineshift (βj = 1 for j = 1, 6, else it equals−1). In cases
where the distributionh would be perfectly known, another level of ambiguity is associated
with the fact, mentioned by Rancourt [92], thatε is itself a product of several factors. As
mentioned previously, this level is ignored in the present calculation. Invariants similar
to those derived for bivariate distributionsh(δ,1) may be associated with equation (76).
All trivariate distributionsh(Bhf , δ, ε) which fit cexp(v) (using Lorentzian lines with equal
linewidths) satisfy:

6∑
j=1

Ij 〈(αjBhf + δ + βjε)k〉h = constant= 〈δk〉q .
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In addition, assuming nowI7−k = Ik, k = 1, 2, 3 we obtain:

〈δ〉h + (4I1− 1)〈ε〉h = 〈δ〉q
as well as:

〈B2
hf 〉
( 6∑
j=1

Ijα
2
j

)
+ 〈δ2〉h + 〈ε2〉h + (8I1− 2)〈δε〉h = constant′ = 〈δ2〉q .

When equation (76) is applied to an assumed trivariate normal distribution, the ambiguity
will in general be less than in the bivariate quadrupole case discussed below as soon as the
Zeeman line shift|αjBhf | is significantly larger than eitherσδ or σ1. If these two latter
widths are both much smaller than the typical maximum width|α1Bhf |, the distribution
becomesde factoapproximately one dimensional and is much less sensitive to the detailed
(but physically reasonable) assumptions on theδ and1 distributions.

As bivariate normal distributions have recently been used to analyse Mössbauer spectra
[26, 27] of for instance diamagnetic oxide glasses [26], it is worth looking into the ambiguity
resulting from equation (70) in the case of such distributionsf (δ,1). Moreover they
provide a good illustration of the aforementioned problems.

7.2.1. The example of a bivariate normal distributionf (δ,1). The distributionf (δ,1)
and its characteristic functionφf (t1, t2) are (see section 4, equations (23) and (24) and [64]):

f (δ,1) = 1

2π

1

σδ,f σ1,f

√
1− ρ2

f

exp

{ −1

2(1− ρ2
f )

[(
δ − δ0

σδ,f

)2

− 2ρf

(
δ − δ0

σδ,f

)(
1−10

σ1,f

)

+
(
1−10

σ1,f

)2]}

φf (t1, t2) = exp

{
i(t1δ0+ t210)−

(
1

2
σ 2
δ,f t

2
1 + ρσδ,f σ1,f t1t2+

1

2
σ 2
1,f t

2
2

)}
(77)

where the set of parameters (δ0, σδ,f , 10, σ1,f , ρf ) is such that:

β0 ≡ 〈β〉f
σβ,f ≡ 〈(β − β0)

2〉1/2f

ρf ≡ 〈(δ − δ0)(1−10)〉f
σδ,f σ1,f

(78)

whereβ = δ or 1. ρf is the usual correlation coefficient with−1 6 ρf 6 +1. The
left-hand side of equation (70) can be written as:∑

ε=±1

exp

{
it (δ0+ ε10/2)− t

2

2

[
σ 2
δ,f + ερf σδ,f σ1,f +

1

4
σ 2
1,f

]}
. (79)

To prove that solutions exist for ag(δ,1) different fromf (δ,1) which fulfil equation (70),
we will first discuss the case whereg(δ,1) is bivariate normal such asf (δ,1), and then
the case whereg(δ,1) is different. Let us define:

x = 2σδ,f /σ1,f x > 0

a = x2+ x−2− 2
(80)
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wherea is seen to be positive wheneverx 6= 1 and zero forx = 1. We further require:

σ 2
δ,g = ασ 2

δ,f + (1− α)σ 2
1,f /4= σ 2

δ,f (α + (1− α)/x2)

σ 2
1,g = 4(1− α)σ 2

δ,f + ασ 2
1,f = σ 2

1,f (α + (1− α)x2)
(81)

with 06 α 6 1. The correlation coefficientρg must satisfy:

ρgσδ,gσ1,g = ρf σδ,f σ1,f (82)

that is, the condition:
ρg

ρf
= 1√

1+ aα − aα2
. (83)

The bivariate normal distributiong(δ,1) with a set of parameters (δ0, σδ,g, 10, σ1,g, ρg)
is by construction such that (withε = ±1):

σ 2
δ,g + ερgσδ,gσ1,g + 1

4σ
2
1,g = σ 2

δ,f + ερf σδ,f σ1,f + 1
4σ

2
1,f . (84)

The two distributionsf (δ,1) andg(δ,1) thus verify the ambiguity equation (70), as shown
by an inspection of equation (79).

The ratioρg/ρf is equal to unity forα = 0 and forα = 1. It decreases to a minimum
of 1/
√
(1+ a/4) for α = 1/2. The ratio is monotonic decreasing overα ∈ {0, 1/2} and

monotonic increasing overα ∈ {1/2, 1}. We note that our solution (equations (80)–(83))
shows no ambiguity for the case ofx = 1, that is, fora = 0. In contrast, large changes
in σδ,g, σ1,g and ρg are allowed whenx is either small or large compared to unity. For
α = 0, as expectedσδ,g = σ1,f /2 andσ1,g = 2σδ,f as this corresponds to an interchange
of the corresponding variancesσ 2

δ,f andσ 2
1,f in equation (79).

Distributionsg(δ,1) constructed from degenerate normal distributions also yield spectra
identical to those obtained from the bivariate normal distributionf (δ,1). A first example
is the unphysical distribution of solely the isomer shift:

q(δ)δ(1) = 1

2
δ(1)

[
1

σ+
√

2π
exp

{
− (δ − δ+)

2

2σ 2+

}
+ 1

σ−
√

2π
exp

{
− (δ − δ−)

2

2σ 2−

}]
(85)

with:

δ± = δ0± 1
210

σ 2
± = σ 2

δ,f ± ρf σδ,f σ1,f + 1
4σ

2
1,f .

(86)

As the assumption of a linear dependence betweenδ and1 is commonly found in the
literature, the second example is more relevant to experimental situations. We assume that:

g(δ,1) = δ(δ − δl − β1) 1

σl
√

2π
exp

{
− (1−1l)

2

2σ 2
l

}
. (87)

As 1 > 0, a normal (Gaussian) distribution of1 is a priori expected to properly describe
an actual distribution of1 only if the weight of the1 < 0 part is small or negligible
compared to unity, typically〈1〉l & 2σl . However, equation (65) shows that a spectrum
can actually be calculated from a distributionh(δ,1) with any weight for the part1 < 0
(changing the lower limit of integration to−∞ in equation (65)). For57Fe and119Sn,
the spectrum only depends on|1|. The associated distributionga(δ,1) when restricted to
1 > 0 is obtained by folding1 6 0 onto1 > 0. Thus:

ga(δ,1) = 1

σl
√

2π
[exp{−(1−1l)

2/(2σ 2
l )}δ(δ − δl − β1)

+ exp{−(1+1l)
2/(2σ 2

l )}δ(δ − δl + β1)]. (88)
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The distribution of1 is thus that of the absolute value of a Gaussian variable, namely:

pa(1) = 1

σl
√

2π
[exp{−(1−1l)

2/(2σ 2
l )} + exp{−(1+1l)

2/(2σ 2
l )}] (89)

with 1 > 0. We see thatga(δ,1) and g(δ,1) yield identical spectra. Thus
in equation (87), we allow negative1 values. A similar conclusion also holds for
equation (77). In practice, the second doublet matters only in the range where the second
exponential in equation (89) is significant. Under such conditions, equation (87) is also
a legitimate form. The ambiguity equation remains unchanged with the extension of1

to negative values (done for theoretical simplicity). If1l/σl � 1, thenpa(1) can be
considered Gaussian (Figure 18(c)). The characteristic function ofg(δ,1) is given by:

-1.0 0.0 1.0 2.0 3.0
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0 1 2 3∆ (mm/s)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
(∆

)

Fit to spectrum
case (+)(b)

0.0 0.5 1.0 1.5∆ (mm/s)
0

1

2

3

4

5

6

P
(∆

)
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Figure 18. (a) Shown are three spectra calculated for bivariate normal distributions using
the values given in table 3, and forα = 0 compared toα = 1/2 and 1. The spectra
are shifted for clarity and are otherwise indistinguishable. QS distributions deduced from a
fit of the spectrumα = 1 of (a) using a model-independent fitting method [90]: (b)δ =
0.9069 mm s−1 + 6.3238× 10−21 and (c)δ = −3.0999 mm s−1 + 3.95331. In both (b) and
(c), dashed lines represent the theoretical distributionsp±(1) calculated for the corresponding
parameters.
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φg(t1, t2) = exp{it1δl + i(βt1+ t2)1l − 1
2(βt1+ t2)2σ 2

l }.
The associated term of the ambiguity equation (70) is:∑

ε=±1/2

exp

{
it (δl + (β + ε)1l)− 1

2
t2(β + ε)2σ 2

l

}
which when identified with equation (79) yields:

1l = 10

δl = δ0− β10

βσ 2
l = ρf σδ,f σ1,f

σ 2
l (4β

2+ 1) = 4σ 2
δ,f + σ 2

1,f

(90)

showing thatβ has the same sign asρf (assuming here thatρf 6= 0). Definingz as:

z = 4ρf σδ,f σ1,f
4σ 2

δ,f + σ 2
1,f

(91)

it follows that 0< |z| 6 1 and thatz is unique for a given bivariate normal distribution
as bothρhσδ,hσ1,h and 4σ 2

δ,h + σ 2
1,h are constant for all ambiguity solutions given by

equations (80)–(83). Therefore, two solutions of the sign ofρh are obtained forβ and
consequently forσ 2

l andδl :

β± = z

2[1±√1− z2]

{
0< |β+| 6 1/2

1/26 |β−|

σ 2
l,± =

1

2
(4σ 2

δ,f + σ 2
1,f )[1±

√
1− z2]

δl,± = δ0− β±10.

In most cases, only theβ+ solution would be considered as physically plausible. The
condition 1l > 2σl will not necessarily be obeyed for theβ+ solution as shown by
figure 18(b). The latter point is discussed below where it will be seen not to have serious
consequences.

Calculations usingf (δ,1), q(δ)δ(1) andg(δ,1) (taken from equations (77), (85) and
(87)) show that the expressions given in equations (73)–(75) are valid in all cases. For
instance, equations (85) and (87) yield:

〈δ〉q = 1
2[δ+ + δ−] = δ0 = 〈δ〉f = 〈δ〉g

〈δ2〉q = 1
2[σ 2
+ + δ2

+ + σ 2
− + δ2

−] = σ 2
δ,f + δ2

0 + 〈 1412〉f
that is:

σ 2
δ,q = σ 2

δ,f + 〈 1412〉f (92)

as expected from equation (74). Furthermore from equation (87) we obtain:

σ 2
δ,g = β2σ 2

l .

Therefore, using equations (90) we obtain:

σ 2
δ,g + 〈 1412〉g = 1

4σ
2
l (4β

2+ 1)+ 1
41

2
0 = σ 2

δ,f + 1
4σ

2
1,f + 1

41
2
0

= σ 2
δ,f + 〈 1412〉f = σ 2

δ,q .

Although we have not proven it, the possible solutions to the ambiguity problem in the
case of the bivariate normal distribution are likely to be constituted of these three solutions
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together with all possible linear combinations of them with positive normalized weights.
This is based on the fact that a characteristic functionφq(t) which is given by the sum
of two exponentials of second-degree polynomials, which are themselves proportional to
characteristic functions, can only be obtained as the sum of similar exponential terms as
the exponential of a polynomial of degree greater than 2 cannot be a characteristic function
[93].

Finally, the bivariate normal distribution (equation (77)), the ‘isomer shift’ distribution
(equation (85)) and the distribution with a linear dependence ofδ on 1 (equation (87))
are certainly different distributions. One cannot be transformed into another by any simple
operation.

To convince the reader of the need to take such an ambiguity problem into account,
we have calculated57Fe Mössbauer spectra using bivariate normal distributionsf (δ,1) in
equation (65). The necessary input parameters have been taken from the fits of such spectra
from CaO–SiO2–FeO glasses using this distribution [26]. In particular we have considered
among others the parameters reported by Albertoet al [26], in their table 1 for Fe2+(IV),
sample A (see table 3,α = 1). Table 3 reports the values of the parameters used for the
calculations of the simulated spectra shown in figure 18. An examination of these spectra
shows clearly that they are identical despite large changes in the standard deviationsσδ,h
andσ1,h. The isomer shiftδ of Fe2+ is known to range between∼0.6 and∼1.6 mm s−1

[97]. Thus a physically reasonable value ofσδ,h should be less than about 0.25 mm s−1.
The standard deviationsσδ,h reported in table 3 over a wide range ofα are thusa priori
consistent with this estimation. Selecting a particular value ofσδ,h, and as a consequence
σ1,h, may thus involve a certain degree of arbitrariness. Furthermore we note that we have
assumed the bivariate distributionf (δ,1) to be Gaussian, and the Mössbauer spectrum to
be exactly known. This is however not necessarily the case experimentally, which further
adds to the arbitrariness.

Table 3. Parameters used to calculate the spectra of figure 18 with bivariate normal distributions
of δ and1(h(δ,1) = f (δ,1) for α = 1). Here,x = 0.2809, anda = 10.7514. The symbols
are defined in the text.

δ0 10 σδ,h σ1,h
α (mm s−1) (mm s−1) (mm s−1) (mm s−1) ρh

0 0.972 1.03 0.2844 0.1597 0.4780
1/2 0.972 1.03 0.2089 0.4177 0.2489
1 0.972 1.03 0.0799 0.5687 0.4780

Linear variations (equation (87))1 either>0 or60

(+) σl,+ = 0.5861
δ+ = 0.9069+ 6.3238× 10−21

(−) σl,− = 0.0741
δ− = −3.0999+ 3.95331

The theoretical spectra calculated for the linear dependencies,δ = δl,± +β±1, with the
parameters of table 3 and if necessary with1 < 0 (see discussion below equation (87)) are
also identical to those in figure 18(a) for various bivariate normal distributions, confirming
the validity of our analysis. Table 3 yields10/σl,− ' 13.9 and10/σl,+ ' 1.76. Thus
negative values of1 have to be considered for the(+) term only. To check the validity of
equations (87), (90) and (91), we have fitted a spectrum calculated from a bivariate normal
distribution withα = 1 (table 3) with a model-independent method [90]. We have assumed
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either+ or− in δ = δl,±+β±1 (with 1 > 0) with the values ofδl,± andβ± given in table 3.
The fitted spectra cannot be distinguished from the simulated ones and so are not shown in
figure 18(a). Figure 18(b) compares the distribution obtained from the fit with the theoretical
distributionpa(1) calculated for1l = 10 = 1.03 mm s−1 andσl = 0.5861 mm s−1 (table 3,
case(+)). For the fit, a single isomer shiftδ = δl,+ + β+1 for each1 was used. This
is similar to typical situations in practice. From the preceding discussion, the theoretical
spectrum (with negative1) is equivalent to a situation with two isomer shifts for small1

(and1 > 0). This explains the small distortions seen in figure 18(b) for small1. However
the overall agreement is very good. Figure 18(c) shows an excellent agreement between
the fitted distribution and the normal one calculated for〈1〉 = 1.03 mm s−1 and a standard
deviationσ = 0.0741 mm s−1 (table 3). As1l/σl,− � 1, the assumption of a single-valued
δ for every1 (i.e. δ = δl,−+β−1) is now perfectly valid. The average QS and the standard
deviation (〈1〉, σ1) obtained from the fitted distributions are (1.05, 0.557) mm s−1 for the
(+) case, and (1.03, 0.0767) mm s−1 for the (−) case.〈1〉+ andσ1+ from the distribution
pa(1) are given by:

〈1〉+ =
√

2

π
σl,+ exp{−12

0/(2σ
2
l,+)} +10 erf(10/(

√
2σl,+))

σ 2
1+ = σ 2

l,+ +12
0− 〈1〉2+.

The theoretical values are〈1〉+ = 1.0486 mm s−1 andσ1+ = 0.5521 mm s−1 for 10 =
1.03 mm s−1 andσl,+ = 0.5861 mm s−1 (table 3,(+)). Similarly, 〈1〉− = 1.03 mm s−1

and σ1− = 0.0741 mm s−1. In both cases, a very good agreement is found between the
theoretical values and those found for the fit. Both figures 18(b) and (c) confirm further
that a spectrum calculated from abivariate normal distribution can as well be accounted
for by a distribution of1 including linear dependencies ofδ on1.

The spectrum given in figure 18(a) (α = 0) has also been fitted with a distribution of
IS’s assuming zero QS:g(δ,1) = q(δ)δ(1). The values found (equations (73)–(75)) are
δ0 = 0.972 mm s−1, σ 2

δ,q = 0.356 (mm s−1)2 andm3
δ,q = 0.343× 10−1 (mm s−1)3. The

theoretical values calculated fromg(δ,1), equation (87) for the(−), case in table 3 are
0.972, 0.352 and 0.335×10−1 in the same units, respectively. The usefulness of fitting with
an IS distributionq(δ) is thus confirmed (see discussion below equation (75)). In addition,
using this method it is possible to use ‘thin’ spectra (removal of the linewidth0) and to
calculate invariants, which may help to fit and interpret them.

Our calculations demonstrate that significant errors may result from the assumptions
generally done to calculate QS distributions from for instance57Fe Mössbauer spectra.
Most often in the literature, one of the following assumptions is made:

• δ is fixed so thatf (δ,1) reduces toδ(δ − δ0)p(1).
• δ is a function of the QS:δ = F(1). Usually a linear relation is assumed:δ = δl+β1.
• δ and 1 are distributed according to a bivariate normal distribution including a

correlation coefficient.

Our results (for instance those shown in table 3) prove that an ambiguity may remain which
cannot be easily removed by physical guidance but point out the interest of using quantitative
information about shapes of spectra. The latter ambiguity may be termedphysical ambiguity
to distinguish it from themathematical ambiguity. Mathematical ambiguity is associated
with solutions of the ambiguity equation which can be rejected with certainty without the
need of performing supplementary experiments. However it is not possible to completely
remove the uncertainty which results from the previous physical ambiguity although physical
considerations may reduce it to an acceptable level in many circumstances (using the
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relations given in equations (73)–(75)). This explains the many difficulties in the literature
about QS distributions especially for the57Fe isotope. Thus care must be taken when
discussing details of QS distributions. More generally, our discussion raises the problem
of the definition of a method for constructing all solutions for the ambiguity problem for a
givenφq(t), that isf (δ,1) such thatφf (t, t/2)+φf (t,−t/2) = 2φq(t). The present section
finally leads us to emphasize that the quality of fit, although necessary, cannot be a sufficient
criterion for judging the validity of the associated QS distribution. An important problem is
further to develop experimental techniques to overcome partially or totally the fundamental
ambiguity due to the partial information provided by classical Mössbauer spectra.

The considerations of this section are by no means restricted to QS distributions in
the case of57Fe and119Sn Mössbauer spectroscopy. We have discussed this case in detail
because it is experimentally the most important and also the most acute. Bothσδ and
σ1 broaden the resonant lines in a similar fashion, and so are most difficult to separate.
Supplementary experiments such as in this case spectra in an external magnetic field should
be exploited to at least reduce these ambiguities, both mathematical and physical. A
similar analysis could be made for other hyperfine methods which are used to determine
QS distributions. In the case of NMR spectroscopy for instance, there is a difficulty in
separating QS from Knight shift distributions in disordered solids.

8. Conclusions

We have presented some considerations on the consequences of statistical isotropy of the
EFG tensor which help to clarify the nature of the assumptions often made in the literature on
disordered solids from M̈ossbauer experiments or more generally from hyperfine methods.
The η distribution which is found for the reference model [1], called here the Gaussian
isotropic model (GIM), is seen to be at least approximately valid for a class of disordered
solids much broader than the sole GIM class. The latter distribution is thus the mosta priori
reasonable distribution for a disordered solid. The GIM yields also a universal distribution
f (Vzz, η) which results from the universality of the central limit theorem in statistics.
This model distribution is made possible in some solids by the peculiar characteristics
of the physical contributions to the EFG. The sole free parameter in this model, denoted
here asσ , determines the actual physical scale and yields for instance the width of the
distribution. If the GIM model is valid, no precise conclusion can be drawn about the
structure from EFG measurements alone. By contrast, no universal distributionf (Vzz, η) is
able to account for the various situations encountered in disordered solids with so widely
different electronic structures and short- as well as medium-range orders. The generalized
χ -type QS distributions:

Pn(1) ∝ 1n−1 exp

(
− 1

2

2σ 2

)
n 6 4

are good mathematical approximations which lead to satisfying fits of many57Fe Mössbauer
spectra but are of no help to obtain the number of structural degrees of freedom of the local
environments of the probe atoms. The name ‘shell model’ which is still widely used to
designate such QS fits is confusing and cannot be justified by a single argument. We
propose to replace this by the names ‘generalizedχ models’ when only QS distributions
are considered and fitted with the latter mathematical models and by the names ‘degenerate
Gaussian models’ when explicit assumptionsà la Czjzek [29] are made about the distribution
of the EFG tensor. The consequences of the assumptions made in the ‘degenerate Gaussian
models’ Cz(n) have never been checked experimentally. Simulations have been performed
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and presented here to obtain some general features of the marginal distributions ofVzz and
of η for Cz(n) models (16 n 6 4). Theη distribution which is found for the GIM is also
a good approximation of theη distributions of the Cz(3) and Cz(4) models. The former
approximations of QS distributions have not yet received strong physical support from an
experimental point of view due to various difficulties (an ambiguity problem which occurs
when trying to extract QS distributions from12 ↔ 3

2 Mössbauer spectra has also been
considered in subsection 7.2). This is also the case from the point of view of simulations
with structural models (due to an insufficient number of atoms used in such simulations).

Structural models with built-in medium-range order are now beginning to receive strong
experimental support. One cannot exclude that such studies would show EFG and QS
distributions consistent with Czjzek’s extensions or modifications of them forn < 5 if
amorphous solids are scrutinized at the appropriate scale both experimentally (typically at the
scale of DCEMS for instance) and with structural models. New models of EFG distributions
in disordered solids are worth being investigated. The methods used in this paper can be
applied to any physical property which is related to a second rank tensor (such as atomic
level stresses, dipolar tensors etc). Some of them have already been applied to atomic
level stresses in [8]. They are now being applied to analyse the EFG distributions found
in 27Al and 65Cu NMR spectra of AlCuFe quasicrystals and their approximants [98]. For
these isotopes, NMR spectroscopy is very sensitive to fine details of the EFG distribution.
The EFG distribution of the quasicrystals has been found to follow a GIM model to high
accuracy. It has also been possible to follow the appearance of new crystalline sites in the
approximant phases, with distinctive EFG values superimposed on the GIM distribution.
This effect would have gone unnoticed without the help of the GIM model distribution to
analyse the results.
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Appendix A

The rotations from thex, y, z to thex ′, y ′, z′ system defined by the Euler angles(α, β, γ )
are shown in figure A1. The rotationα (where 06 α < 2π ) is around thez-axis; the
rotationβ (where 06 β < π ) is around they1-axis; the rotationγ (where 06 γ < 2π ) is
around thez2-axis.

After a rotation of the frame of reference defined by the Euler angles(α, β, γ ), the new
tensor elements expressed here by the five components ofU ′ are linearly related to the old
components ofU by:

U ′i =
5∑

j=1

aijUj i = 1, . . . ,5 (A1)

or equivalently:

U ′ = O(α, β, γ )U
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Figure A1. The rotations from thex, y, z to the x′, y′, z′ system defined by the Euler angles
(α, β, γ ). A circle on thex, y-plane is shown as a short-dashed line. The rotationα is around
thez-axis producing thex1, y1, z1 system (shown as dashed lines). The rotationβ is around the
y1-axis producing thex2, y2, z2 system. A circle on thex1, z1-plane is shown as a dot–dashed
line. The rotationγ is around thez2-axis producing thex′, y′, z′ system. A circle on the
x′, y′-plane is shown as a long-dashed line.

whereO(α, β, γ ) is an orthogonal 5× 5 matrix:

Oij (α, β, γ ) = aij
5∑

j=1

a2
ij = 1.

(A2)

Explicit expressions for the different coefficients are given below:

• For i = 1:

a11 = 1

2
[3 cos2(β)− 1]

a12 =
√

3

2
sin(2β) cos(α)

a13 =
√

3

2
sin(2β) sin(α)

a14 =
√

3

2
sin2(β) sin(2α)

a15 =
√

3

2
sin2(β) cos(2α).

• For i = 2:

a21 = −
√

3

2
sin(2β) cos(γ )

a22 = cos(α) cos(2β) cos(γ )− sin(α) cos(β) sin(γ )

a23 = sin(α) cos(2β) cos(γ )+ cos(α) cos(β) sin(γ )

a24 = [sin(2α) cos(β) cos(γ )+ cos(2α) sin(γ )] sin(β)

a25 = [cos(2α) cos(β) cos(γ )− sin(2α) sin(γ )] sin(β).
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• For i = 3:

a31 =
√

3

2
sin(2β) sin(γ )

a32 = − cos(α) cos(2β) sin(γ )− sin(α) cos(β) cos(γ )

a33 = cos(α) cos(β) cos(γ )− sin(α) cos(2β) sin(γ )

a34 = sin(β)[cos(2α) cos(γ )− sin(2α) cos(β) sin(γ )]

a35 = − sin(β)[cos(2α) cos(β) sin(γ )+ sin(2α) cos(γ )].

• For i = 4:

a41 = −
√

3

2
sin2(β) sin(2γ )

a42 = sin(β)[sin(α) cos(2γ )+ cos(α) cos(β) sin(2γ )]

a43 = sin(β)[sin(α) cos(β) sin(2γ )− cos(α) cos(2γ )]

a44 = cos(2α) cos(β) cos(2γ )− 1
2 sin(2α)[1+ cos2(β)] sin(2γ )

a45 = − sin(2α) cos(β) cos(2γ )− 1
2 cos(2α)[1+ cos2(β)] sin(2γ ).

• For i = 5:

a51 =
√

3

2
sin2(β) cos(2γ )

a52 = sin(β)[sin(α) sin(2γ )− cos(α) cos(β) cos(2γ )]

a53 = − sin(β)[sin(α) cos(β) cos(2γ )+ cos(α) sin(2γ )]

a54 = cos(2α) cos(β) sin(2γ )+ 1
2 sin(2α)[1+ cos2(β)] cos(2γ )

a55 = 1
2 cos(2α)[1+ cos2(β)] cos(2γ )− sin(2α) cos(β) sin(2γ ).

Appendix B

If the EFG tensor is statistically isotropic, the distributions of the tensor elements remains
unchanged after a rotation of the frame of reference defined by the Euler angles (α, β, γ )
(appendix A). The random vectorsU ′ andU are identically distributed:

U ′ d= U . (B1)

Their characteristic functions (equation (22) and below, [50, 52, 95]) are identical. If we
choose:

α = 0

β = cos−1

(
1√
3

)
≈ 54.7356◦

γ = 90◦

(B2)

we deduce (appendix A and equation (B1)):

U ′1
d=
√

2
3U2+

√
1
3U5

U ′2
d=
√

1
3U3+

√
2
3U4.

(B3)
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We further assume that theUk are independent random variables and we define their
characteristic functions:

φ1(t) = 〈exp(itU1)〉
φk(t) = φ(t) = 〈exp(itUk)〉 k = 2, . . . ,5.

(B4)

The Uk for k = 2, . . . ,5 are identically distributed in the statistically isotropic case
(section 3), so they have the same characteristic functionφ(t). Moreover, as theUk for
k = 2, . . . ,5 have symmetric distributions,φ(t) is a real function. Rotational invariance
and relations (B3) prove that:

φ1(t) = φ(
√

2
3t)φ(

√
1
3t) = φ(t) (B5)

where the last equality comes from the second relation (B3). Relations (B4) and (B5) prove
that the fiveUk are identically distributed. If we now set:

α = 45◦

β = cos−1

(
1√
3

)
≈ 54.7356◦

γ = 0◦

(B6)

we deduce:

U ′1
d=
√

1
3(U2+ U3+ U4) (B7)

that is:

φ(t) = φ3(

√
1
3t) (B8)

and more generally:

φ(t) =
5∏

j=1

φ(aij t) i = 1, . . . ,5 (B9)

from equations (A1) and (B1) and with condition (A2). The functional equations (B8) or
(B9) have a unique solution:

φ(t) = exp

(
− s

2t2

2

)
(B10)

that is the characteristic function of a normal distribution with zero mean and variance
s2 [50, 63, 64, 95]. TheUk for k = 1, . . . ,5 are therefore independent and identically
distributed Gaussian random variables with a covariance matrix given by:

3̃ = s2Ĩ5.

Finally from equation (5), we obtain:

s2 = 〈1
2〉

20
. (B11)

In summary, if the distribution of the EFG tensor is assumed to be invariant by rotation
and if the components ofU are assumed to be independent, then the distribution ofU
is multivariate normal with a zero mean vector and a covariance matrix3̃ = 〈12〉Ĩ5/20
(equation (12)).
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Appendix C

The distribution of the random vectorU associated with the EFG tensor (equation (52))
can be more simply calculated in the frame of reference ofṼ0 as theUk are normal and
independent with means given by:

〈U1〉 = (1− x)U1(0)

〈Uk〉 = 0 k = 2, 3, 4

〈Uk〉 = (1− x)U5(0)

(equation (53)) and a common variance given by:

〈(Uk − 〈Uk〉)2〉 = x2σ 2

4
k = 1, . . . ,5

(equation (54)). This distribution is:

P(U ) ∝
(

1

(xσ )5

)
exp

(
4(1− x)U ·U (0)

(xσ )2

)
× exp

(
− (1− x)

2V 2
zz(0)(1+ η2(0)/3)+ V 2

zz(1+ η2/3)

2(xσ )2

)
. (C1)

The constantsVzz(0), η(0) andU (0) are associated with̃V (0), the ‘ordered’ contribution to
the total EFG tensor, and where only thex andσ contributions to the constant normalization
factor have been retained. To calculate the bivariate distributionf (Vzz, η), it is necessary
to diagonalizeṼ , that is to change the set of variables fromU = (U1, . . . , U5) to
(Vzz, η, α, β, γ ). This will introduce a factorV 4

zzη(1−η2/9) which comes from the Jacobian
of the transformation 2 sin(β)V 4

zzη(1− η2/9) as shown by equation (5) of Czjzeket al [1]
(see also section 3). It is the sin(β) term which allows us to transform the integral overβ
described below into an integral overt = cos(β).

It solely remains to express the scalar productU · U (0) in equation (C1) in terms
of the new variables. In the principal axis system of the total EFG tensor, the latter
scalar product isU ′ · U ′(0) and the sole non-zero components ofU ′ areU ′1 = Vzz/2 and
U ′5 = (Vxx − Vyy)/(2

√
3) (see equation (4)). With the simplifying assumptionη(0) = 0,

the only non-zero component ofU (0) is U1(0) = Vzz(0)/2. From the relations given in
appendix A, it is deduced that:

U ′1(0) = 1
4Vzz(0)(3 cos3(β)− 1)

U ′5(0) =
√

3

4
Vzz(0) sin2(β) cos(2γ ).

That is, the scalar product in equation (C1) can be written as:

U ·U (0) = U ′ ·U ′(0) = 1
8VzzVzz(0)(3 cos2(β)− 1+ η sin2(β) cos(2γ )). (C2)

Integrating the transformed equation (C1) overt = cos(β) from 0 to 1 and overφ = 2γ
with 06 φ 6 π and defining� ≡ (1−x)VzzVzz(0)/(2x2σ 2), we obtain finally equation (61)
which can be calculated numerically. Equations (C1) and (C2) also yield the distribution
P(α, β, γ ) after integration overVzz and η. As expected,P(α, β, γ ) does not reduce to
the uniform distribution (proportional to sin(β)) which would be obtained for a statistically
isotropic distribution of the EFG tensor.

A similar calculation might be performed to obtain the bivariate distributionf (Vzz, η)

for η(0) different from zero which would be expressed in the form of a slightly more
involved integral than the one of equation (61).
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Appendix D

A Gram–Schmidt method was used to construct random 5× 5 orthogonal matrices for the
computer simulations of the Cz(n) models [78] (see subsection 4.2.2). Five vectorspi (with
i = 1, . . . ,5) with independent Gaussian components identically distributed and with zero
mean and unit variance are first generated by the classical Box–Müller method [78]. The
vectorq1 = p1/‖p1‖ is first calculated. The sets of vectors:

ri = pi −
i−1∑
j=1

(pi · qj )qj

and:

qi = ri/‖ri‖
with i = 2, . . . ,5 allow us finally to construct the orthogonal matrix sought after whose
columns are the five vectorsqi :

H̃ = (q1, . . . , q5)

as in equation (33).
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